首页 > 数码科技 > 八大行星的资料_银河系自转最快恒星

八大行星的资料_银河系自转最快恒星

栏目:数码科技

作者:B姐

热度:0

时间:2024-02-23 10:15:48

MERCURY水星,VENUS金星,EARTH地球,MARS火星,JUPITER木星,SATURN土星,URANUS天王星,NEPTUNE海王星,PLUTO冥王星

水星的英文名字Mercury来自罗马神墨丘利。符号是上面一个圆形下面一个交叉的短垂线和一个半圆形(Unicode:). 是墨丘利所拿魔杖的形状。在第5世纪,水星实际上被认为成二个不同的行星,这是因为它时常交替地出现在太阳的两侧。当它出现在傍晚时,它被叫做墨丘利;但是当它出现在早晨时,为了纪念太阳神阿波罗,它被称为阿波罗。毕达哥拉斯后来指出他们实际上是相同的一颗行星。中国古代则称水星为“辰星”。

中国古人称金星为“太白”或“太白金星”,也称“启明”或“长庚”。古希腊人称为阿佛洛狄特,是希腊神话中爱与美的女神。而在罗马神话中爱与美的女神是维纳斯,因此金星也称做“维纳斯”。金星的天文符号用维纳斯的梳妆镜来表示。金星的位相变化金星同月球一样,也具有周期性的圆缺变化(位相变化),但是由于金星距离地球太远,用肉眼是无法看出来的。关于金星的位相变化,曾经被伽利略作为证明哥白尼的日心说的有力证据。

地球是太阳系中行星之一,按离太阳由近及远的次序排列为第三。它是太阳系类地行星中最大的一颗,也是现代科学目前确证目前惟一存在生命的行星。行星年龄估计大约有45亿年(4.5×109)。在行星形成后不久,即捕获其惟一的天然卫星-月球。地球上惟一的智慧生物是人类。

因为它在夜空中看起来是血红色的,所以在西方,以罗马神话中的战神玛尔斯(或希腊神话对应的阿瑞斯)命名它。在古代中国,因为它荧荧如火,故称“荧惑”。火星有两颗小型天然卫星:火卫一Phobos和火卫二Deimos(阿瑞斯儿子们的名字)。两颗卫星都很小而且形状奇特,可能是被引力捕获的小行星。英文里前缀areo-指的就是火星。

木星是太阳系九大行星之一,按离太阳由近及远的次序排列为第五颗。它也是太阳系最大的行星,自转最快的行星。中国古代用它来纪年,因而称为岁星。

在西方称它为朱庇特,是罗马神话中的众神之王,相当于希腊神话中的宙斯。

土星是一个巨型气体行星,是太阳系中仅次于木星的第二大行星。土星的英文名字Saturn(以及其他绝大部分欧洲语言中的土星名称)是以罗马神的农神萨杜恩命名的。中国古代称之为镇星或填星。

天王星是太阳系的九大行星之一,排列在土星外侧、海王星内侧而名列第七,颜色为灰蓝色,是一颗巨型气体行星(Gas Giant)。以直径计算,天王星是太阳系第三大行星;但若以质量计算,则比海王星轻而排行第四。天王星的命名,是取自希腊神话的天神乌拉诺斯。

海王星为太阳系九大行星中的第八个,是一个巨行星。海王星是第一个通过天体力学计算后被发现的行星。因为天王星的轨道与计算的不同,1845年约翰·可夫·亚当斯和埃班·勤维叶推算了在天王星外的一个未知行星可能的位置。

1846年9月23日柏林天文台台长约翰·格弗里恩·盖尔真的在这个位置发现了一颗新的行星:海王星。

目前海王星是太阳系内离太阳第二远的行星。海王星的名字是罗马神话中的海神涅普顿(Neptune)。

冥王星是太阳系九大行星中离开太阳最远、最小的一颗行星,1930年被发现。因为它离太阳最远,因此也非常寒冷,这和罗马神话中的冥王普鲁托所住的地方很相似,因此称为“Pluto”。

八大行星中,公转速度最快的是哪个,自转速度最快的是哪个?

1.关于星空的知识

星空

拼音:xīng kōng

含义:指有星光的天空。

沙汀 《困兽记》十八:“仿佛他们的心思,全被灿烂的星空吸引住了。”

杨朔 《潼关之夜》:“ 潼关 的城墙和城楼衬映在星空之下,画出深黑色的轮廓。”

冰心 《走进人民大会堂》:“走进万人大礼堂……好像凝立在夏夜的星空之下。”

扩展资料

如果不受外力的作用,一切物体在万有引力的作用下都有向中心聚集的趋势。最集中的结果就是圆球形啊!星星虽然表面上是固体的,但是由于固体也是有变形性的,并且固体碎颗粒是可以移动的,这些都使它向球形转变成为可能。

星星内部的能量的活动使星星变的形状不规则。但是,高山的石头是受星星引力(万有引力)而从高处向下滚的,河流将泥沙从高处带到低洼的海洋(河流也是受星星的万有引力而流动的)这些都是向中心集中的例子,它们都使星星由不规则变成球形。如果星星内部停止活动,许多亿年后,星星将可能变成一个非常标准的圆球形(离心力和其它天体的引力除外)。

许多小行星,由于自身的质量比较小,导致自身引力比较小,而且星体一般是由比较坚硬的固体岩石构成的,很难在自身引力的作用下完成向中心移动的过程,所以它们的形状就是奇形怪状的,有卵形的,有棒形的。。许多。

参考资料:

搜狗百科——星空

2.有趣的天文科学小知识有哪些

有趣的天文科学小知识有光年是距离单位、太阳的颜色、太阳系中表面温度最高的行星、太阳系中表面风速最快的行星、太阳系中度日如年的行星。

1、光年是距离单位

光年是天文大尺度距离单位,并非时间单位。鉴于光速在真空中不受惯性系和参考系限制而恒定不变的性质,人类把光速作为衡量距离的精准单位,还有一种含义,因为“光年”包含“年”这个字,而年通常是时间单位。

一光年就是光运行一年的距离,科学界把这个年定义为儒略年:365.25年;这样一光年精确的距离为:9460730472580800m,通俗来讲,一光年大概是:9.46万亿公里。目前人类最远探测器是于1977年发射的旅行者一号距离地球约216亿公里,也只有一光年的0.22%。

2、太阳的颜色

太阳真正的颜色是白色。我们之所以把太阳看成**,是因为地球的大气层更不容易将高波长的颜色,比如红色、橘色和**,散射出去。

因此,这些波长的颜色就是我们看到的,这也就是太阳呈现出**的原因。要是离开地球在太空中看太阳的话,就会发现太阳真正的颜色是百色(我也没看过,不知道会不会发现眼睛已经被闪瞎)。

3、太阳系中表面温度最高的行星

太阳系中表面温度最高的行星不是距离太阳最近的水星,而是金星。水星虽然距离太阳最近,但是水星表面温度在白天可以达到427℃,而金星由于有着浓密的二氧化碳气体,导致强烈的温室效应。

其表面温度最高可以达到500℃,就算在金星夜晚也有400多℃,使得金星表面平均温度有400多℃以上。顺便说下,水星因为其夜间温度可以下降至-183℃,使得水星是太阳系中表面温差最大的行星,表面昼夜温差高达600℃。

4、太阳系中表面风速最快的行星

海王星大黑斑是出现在海王星上的暗斑,如同木星的大红斑一样。它在1989年被NASA的航海家2号太空船检测到,虽然他似乎与木星的大红斑一样,但它是个反气旋风暴,它被相信是个相对来说没有云彩的区域。

这个斑点的大小与地球近似,并且非常像木星上的大红斑。起初认为它是与大红斑一样的风暴,但更接近的观察显示它是黑暗的,并且是向海王星内部凹陷的椭圆形。

围绕在大黑斑周围的风速经测量高达每时2400公里(1500英里),是太阳系中最快的风,大黑斑被认为是海王星被甲烷覆盖时产生的一个洞孔,类似于地球上的臭氧洞。

5、太阳系中度日如年的行星

金星的公转周期是224.7个地球日,而自转周期是243个地球日,也就是说金星的一天要比一年长18个地球日,在哪里是名副其实的“度日如年”。

至于原因还没有定论,不过有一点需要注意的是,金星是太阳系中唯一一个逆向自转的大行星,自转方向是自东向西,也就是说在金星上看太阳是西升东落。

3.关于宇宙和星空的相关知识

宇宙,指人类所观察到的和尚未观察到的一切时空总信息 *** ,包括其间的所有事和物。解释宇宙的科学方法和理论构成了现代宇宙论。

中国古代有“上下四方曰宇,往古来今曰宙”的说法(即宇的意思是无限空间,宙的意思是无限时间),宇宙一词也出自于“旁日月,挟宇宙”。

近数世纪以来,科学家根据现代物理学和天文学,建立关于宇宙的现代科学理论,称为物理宇宙学。

人类所观察到的部分宇宙的物件大约是由4.9%的普通物质(构成恒星、行星、气体和尘埃的物质)或“重子”,26.8%的暗物质和68.3%的暗能量构成。重子物质构成星系际的“蛛网”

4.宇宙科学小知识

银河系中的恒星

整个银河系约有2000亿颗恒星。天文学家根据这些恒星的年龄大小不同,将它们分成两大星族:星族I与星族II。星族I是一些年轻的恒星,多分布在银盘的旋臂附近,星族II是一些年老的恒星,多聚集在银核及银晕中。

在银河系里,既有许多如巨星、矮星、变星等单个出现的恒星,也有许多成双成对出现的恒星双星。除双星外,银河系中还可看到由两颗以上的恒星组成的聚星。如双子座的北河二是六合星,半人马座的南门二是三合星。由 10个以上的恒星组成的星团也是银河系里的重要成员。

5.关于太空的科学知识

1、太空是指地球大气层以外的宇宙空间,大气层空间以外的整个空间。物理学家将大气分为5层:对流层(海平面至9千米)、平流层(9~45千米)、中间层(45~80千米)、热成层(电离层,80~400千米)和外大气层(电离层,400千米以上)。

2、地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是航空器依靠空气支持而飞行的最高限度。

3、太空站又称为“空间站”、“轨道站”或“航天站”,是可供多名宇航员巡航、长期工作和居住的载人航天器。在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或航天飞机运送,物资设备也可由无人航天器运送。

4、宇宙是有层次结构的、不断膨胀、物质形态多样的、不断运动发展的天体系统。

5、行星、小行星、彗星和流星体都围绕中心天体太阳运转,构成太阳系。

6、太阳系外也存在其他行星系统。约2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约2.6万光年。

7、银河系外还有许多类似的天体系统,称为河外星系,常简称星系。目前观测到1000亿个星系,科学家估计宇宙中至少有2万亿个星系。

8、星系聚集成大大小小的集团,叫星系团。平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。包括银河系在内约40个星系构成的一个小星系团叫本星系群。

9、若干星系团集聚在一起构成的更高一层次的天体系统叫超星系团。超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。

扩展资料:

1、外太空最冷之处:回力棒星云或许是宇宙中最寒冷的地方,温度仅有零下272摄氏度。回力棒星云距离地球5000光年。

2、外太空最热的行星:开普勒70b是最热的系外行星,温度可能高达7000摄氏度,其轨道也非常接近其恒星,比水星到太阳之间的距离还短。

3、外太空最冷的行星:OGLE-BLG-390L是迄今发现最寒冷的行星,其质量是地球的5倍,被认为是一颗岩石行星,它也是距离地球最遥远的行星之一,距离地球大约28000光年。它表面温度仅为零下220℃,低于液氮的沸点,接近于绝对零度(-273.15℃)。

4、外太空最大恒星:盾牌座UY是目前已知最大星体,是一颗位于盾牌座的红色特超巨星。半径是1708倍太阳半径,也就意味着1708个太阳排成一排。它距离地球约9500光年。

5、外太空中旋转最快的恒星:VFTS 102是迄今最快旋转的超大质量恒星,该恒星赤道区域环绕轴心以每秒600公里的速度高速旋转,由于离心力作用,如此之高的自转速率几乎将这颗恒星撕裂。它非常炽热,是一颗高度发光恒星,是太阳亮度的10万倍,位于大麦哲伦星云中的蜘蛛星云。

6、外太空最小的物质尺寸:已知宇宙中最小的粒子是夸克。

7、外太空中最快的信息传递速度:光速,提示爱因斯坦的速度极限理论无懈可击。量子纠缠技术是安全的传输信息的加密技术,与超光速无关。

太阳系九大行星

水星公转周期:88天,自转周期:58.65天

金星公转周期:224.70天,自转周期:243日

地球公转周期:365.25天,自转周期:23小时56分4秒

火星公转周期:686.98天,自转周期:24小时37分22秒

木星公转周期:约11.86年,自转周期:9小时50分30秒

土星公转周期:约29.5年,自转周期:10小时14分(赤道)

天王星公转周期:约84.32年,自转周期:17时14分24秒

海王星公转周期:约164.8年,自转周期:15小时57分59秒

所以公转最快的是水星,自转最快的是木星。

光速飞行每秒可绕地球7圈半,而中子星每秒可旋转700圈,超光速了吗?

太阳,太阳系的中心天体,是行星的光和热的源泉。它是银河系中的一颗普通恒星,位于距银心约10千秒差距,银道面以北约8秒差距处,并与其他恒星一起绕银心转动。太阳是一个直径约1.4×106公里的气体球,由于引力的作用,太阳的密度和温度是向内增加的。表面温度约6000K,密度极其稀薄。在这样高的温度下不可能存在固体和液体,在太阳表面温度最低的区域有少量的分子,但绝大多数物质以原子的形式存在。在太阳中心,温度超过1.5×107K,压力约3.4×1012牛顿/厘米2,密度达160克/厘米3,在这种高温、高压、高密度的环境中,发生着氢变为氦的热核反应,释放出大量的能量,这些能量主要以辐射的形式稳定地向空间发射,其中约22亿分之一的能量到达地球,是地球上的生物所需的光和热的主要来源。太阳是除地球以外与人类关系最密切的天体,而且是唯一的可以详细考查其表面结构的恒星,所以对太阳的研究人们历来十分重视。下表列出了有关太阳的一些基本数据。

彗星,在扁长轨道上绕太阳运行的一种质量较小的天体。外貌随着与太阳距离的变化不断改变,当远离太阳时,呈现为朦胧的点状,当离太阳较近时,体积急剧变大,太阳风和太阳的辐射压力把慧星内的气体和尘埃向后推开形成一条长长的尾巴。由于慧星的这种独特外貌,中国民间又称它为“扫帚星”。

彗星的命名法有三种。刚发现时,先给一个临时名称,按发现的顺序在年号后面加上一个小写字母,如1990b就是指1990年发现的第二颗彗星。通过近日点以后,就给它以永久命名,即在过近日点的年号后加上一个罗马数字,这个罗马数字表示彗星在当年通过近日点的次序,如1990Ⅲ表示1990年第3颗过近日点的彗星。另外,通常还以发现者来命名,当有多个发现者时最多可取前三个,如池谷—关彗星,多胡—佐藤—小坂彗星。彗星的轨道可分为椭圆(离心率e<1) 、抛物线(e=1)和双曲线(e>1)三类。在椭圆轨道上运行的彗星称周期彗星,它们周期地绕太阳公转。周期彗星又可分为短周期彗星(周期小于200年)和长周期慧星。前者的轨道倾角不大,多为顺行,即绕太阳运动的方向与行星相同。后者的轨道平面在太阳系空间内是随机分布的,顺行的与逆行的各占一半。在双曲线或抛物线轨道上运动的彗星称非周期慧星,它们经过近日点后便一去不复返了。彗星经过行星附近时,会受行星的摄动而改变轨道。如果将观测到的双曲线和抛物线的轨道往前例推,大多数非周期彗星的轨道都曾是离心率较大的椭圆,这说明可能只有很少的彗星是来自太阳系以外的。彗星一般由彗头和彗尾两部分组成。彗头包括彗核和彗发,有的彗星在彗发外还包着厚厚的一层氢原子云,称为“彗云”。彗核的直径很小,只有几百米到上百公里,但集中了彗星的绝大部分的质量,大彗星的质量为103-108亿吨,小彗星的质量只有几十亿吨,彗核的平均密度约为1克/厘米3,和水的密度差不多。彗发的体积随彗星与太阳的距离变化,其直径比彗核大得多,一般为几万公里,有的甚至比太阳还大,但由于彗发内物质很稀薄,故它的质量很小。一般情况下,当彗星走到距太阳两个天文单位附近时,开始产生彗尾。随着与太阳的接近,彗星显著变大变长。彗星的体积很大,可达上亿公里,宽度从几千公里到2000多万公里,但物质极稀薄,密度只有地面附近空气的10亿亿分之一。彗尾的形状多种多样,一般总是向背离太阳的方向延伸,彗尾可分为两类,一类彗尾较直,由离子气体组成,呈蓝色,称“离子彗尾”或“气体彗尾”,它是由太阳风的斥力作用于彗星中的离子形成的。另一类是弯曲的,称“尘埃彗尾”,这类彗尾是太阳光子的辐射压力推斥微尘而形成的。

小行星,主要分布于火星和木星轨道之间,围绕太阳旋转的为数众多的小天体。按提丢斯—波得定则,在火星和木星之间,距太阳2.8天文单位处应该有一颗大行星。

1801年,意大利天文学家皮亚齐发现了一个新行星,命名为谷神星,它距太阳2.77天文单位,但因它的体积和质量太小,不能与大行星为伍,故称为“小行星”。以后的几年里,又发现了另外三颗较大的小行星,它们是智神星、婚神星和灶神星。随着19世纪后期照相技术在天文学上的广泛应用,使发现的小行星的数目急速增加。从1925年起,新发现的小行星算出轨道后,要经过两次以上的冲日观测,才能赋与永久编号和专用名称,有的小行星用古代西方神话中的人物命名,有的则由发现者给与其他名称。目前有永久编号的小行星已达3000多颗。照相巡天观测发现亮度大于照相星等21.2等的小行星有50万颗,小行星的总质量约2.1×1024克,相当于地球质量的0.04%。小行星中最大的是谷神星,它的直径为1000公里,质量为(11.7±0.6)×1023克。除了谷神星等几颗较大的小行星外,其他小行星的直径和质量都很小。小行星的亮度有周期性变化,这是由于它们表面各部分的反照率不同及它们的自转引起的。小行星典型的自转周期为8-9个小时,小行星的自转轴取向毫无规律,呈随机分布。少数较大的小行星可能是球状的,但大多数的形状是不规则的。有的小行星还有自己的卫星。按表面照率的不同,小行星可分为C类(碳质,反照率较小)和S类(石质,反照率较大),另外还有少数小行星的金属含量很高,称M类。绝大多数小行星位于火星和木星轨道之间的小行星带内,轨道半长径界于2.2-3.2天文单位之间,平均为2.77天文单位,少数小行星的轨道半长径比火星小或比木星大。它们的偏心率和轨道倾角多界于大行星和慧星之间,平均为0.15和9.4°。小行星靠反射太阳光而发亮,它们的视亮度跟它们同太阳和地球的距离有关,也跟它们的表面反照率有关。最亮的小行星是灶神星,目视星等为6.5等。由中国紫金山天文台发现的小行星,到1992年为止,已获得正式编号的共有55颗 。

水星,距离太阳最近的行星。中国古代称为辰星。最亮时目视星等为-1.9等,与太阳角距最大不超过28°,由于它离太阳很近,经常淹没在太阳的光辉里,只有在大距前后才能观测到。至今尚未发现有卫星。水星的轨道倾角为7°,是除冥王星外轨道倾角最大的行星。公转的平均速度为47.89公里/秒,是太阳系中运动速度最快的行星,轨道半长径约5790万公里,离心率较大,为0.206,仅次于冥王星。公转周期为87.969日,会合周期为115.86日,自转周期为58.646日,恰为公转周期2/3。

19世纪中叶发现水星的近日点进动每百年为5601〃,用经典力学只能解释5558〃,其余43〃无法解释,即“水星近日点进动问题”。有人提出是由尚未发现的“水内行星”引起的,并计算出“水内行星”的轨道,但多次利用日全食进行观测都未发现。直至1915年,爱因斯坦建立了广义相对论后,才得以解决。水星的赤道半径约2440公里,是地球的38.3%,体积是地球的5.6%,质量为3.33×1026克,也是地球的5.6%,平均密度为5.46克/厘米3,仅次于地球,表面重力加速度为373厘米/秒2。反率为0.06,色指数为+0.91,都比月球的略小。水星的表面很象月球,有很多大小不一的环形山及平原、裂谷、盆地等。水星有极稀薄的大气,气压小于2×10-9百帕,由氦、氢、氧、碳、氩、氖、氙等元素组成。由于大气非常稀薄,所以昼夜温差很大,白天温度高达700K,而夜间可降到100K。水星有偶极磁场,赤道上磁场强度为4×10-7特斯拉,两极为7×10-7特斯拉。

金星,太阳系九大行星之一,按距离太阳由远到近的顺序排列第二。中国古代称“太白星”,为除日、月之外全天最亮的星,最亮时达-4.4等。由于金星位于地球轨道内侧,所以总是出现在太阳附近,它与太阳的角距不大于48°,当位于太阳西方时为晨星,位于太阳东方时为昏星,古代的人为它们分别命名,称晨星为“启明”,称昏星为“长庚”。至今尚未发现金星有卫星。金星的公转轨道是一个很接近正圆的椭圆,其离心率仅0.007,轨道倾角为3.4°。与太阳的平均距离为0.723天文单位,平均轨道速度约35公里/秒,公转周期224.7日。金星与地球间的距离变化相当大,最近时仅4×107公里,此时视直径为61〃;最远时可达2.57×108公里,视直径仅10〃。金星是太阳系内唯一逆向自转的大行星,也就是说,在金星上太阳是西升东落的。金星的自转非常缓慢,周期为243日,比它的公转周期还要长。金星上的一昼夜相当于117个地球日。金星的大小、质量、密度与地球都很接近,其半径约6050公里,是地球赤道半径的95%;质量为4.87×1027克,是地球的81.5%;平均密度约为地球的95%。金星有一层非常浓密的大气,表面气压相当于地球的90倍,主要由二氧化碳组成,占97%以上,此外还有少量的氮、氩、一氧化碳、水蒸气,氯化氢和氟化氢等。金星大气中还存在着频繁的放电现象。由于有浓密的大气保护,金星表面较为平坦,环形山的数目很少,有一些不太高的山或山脉。金星表面不存在任何液态水,由于严酷的自然条件,是不可能有生命存在的。金星没有磁场和辐射带,太阳风、紫外线和X射线可以长趋直入,直达大气深处,在离表面附近的地方形成薄薄的电离层。

由于行星大气中的二氧化碳和水气可以让可见光和紫外线顺利通过,对于红外线却相当于不透明。太阳辐射的可见光和紫外线可以穿过它们加热行星表面,行星向外辐射的热能(主要是红外线)却被吸收和阻挡,最终又返回到行星表面,这样,行星的表面温度会不断升高,要在较高的温度下才能达到热平衡。金星大气非常浓厚,而且97%以上是二氧化碳,因此温室效应非常强烈,表面温度达480℃左右,而且基本上无地区、昼夜季节的差别。

地球,太阳系九大行星之一,按离太阳由近及远的次序为第三颗。它有一个天然卫星——月球,二者组成一个天体系统——地月系统。地球大约有46亿年的历史。

一、自转和公转

1543年,哥白尼在《天体运行论》一书中首先完整地提出了地球自转和公转的概念。此后,大量的观测和实验都证明了地球自西向东自转,同时围绕太阳公转。

1851年,法国物理学家傅科在巴黎成功地进行了一次著名的实验(傅科摆试验),证明地球的自转。地球自转周期约为23时56分4秒平太阳时,地球公转的轨道是椭圆的。公转轨道的半长径为149597870公里,轨道的偏心率为0.0167,公转周期为一恒星年,公转平均速度为每秒29.79公里,黄道与赤道交角(黄赤交角)为23°27′。地球自转和公转运动的结合产生了地球上的昼夜交替、四季变化和五带(热带、南北温带和南北寒带)的区分。地球白转的速度是不均匀的,有长期变化、季节性变化和不规则变化。同时,由于日、月、行星的引力作用以及大气、海洋和地球内部物质的各种作用,使地球自转轴在空间和地球本体内的方向都要产生变化,即岁差和章动、极移和黄赤交角变化。

二、形状和大小

地球是球形这个概念的出现,可上溯到公元前五、六世纪。当时,希腊的毕达哥拉斯学派的哲学家只是从球形最美的观念出发产生这一概念的。亚里士多德根据月食时月球上地影是一个圆,第一次科学地论证了地球是个球体。中国早在战国时期,哲学家惠施已提出地球是球形的看法。

公元前三世纪,古希腊的地理学家埃拉托斯特尼成功地用三角测量法测量了阿斯旺和亚历山大城之间的子午线长。中国唐朝时期,在一行的指导下,由南宫说率领的测量队在河南省黄河南北的平原地带进行了最早的弧度测量,算出了北极的地平高度差一度,相当于南北地面距离相差约351里80步(唐朝的长度单位5尺=1步,300步=1里),从而可算出地球的半径。这项工作比阿拉伯人的类似工作约早100年。在现代,除用大地测量方法外;还可用重力测量确定地球的均衡形状。人造地球卫星上天后,地球动力学测地方法得到很大发展。各种方法的联合使用,使得地球形状和大小的测定精度大大提高。

1976年国际天文学联合会天文常数系统中,地球赤道半径α为6378140米,地球扁率因子1/f为298.257。地球不是正球体,而是扁球体,或者说,更象个梨状的旋转体。人造地球卫星的观测结果表明、地球的赤道也是个椭圆,据此可认为地球是个三轴椭球体。地球自转产主的惯性离心力使得球形的地球由两极向赤道逐渐膨胀,成为目前的略扁的旋转椭球体形状,极半径比赤道半径约短21公里。地球内部物质分布的不均匀性,进一步造成地球表面形状的不规则性。在大地测量学中,所谓的地球形状是指大地水准面的形状,在这个面上重力位各处相同,是个等位面。日、月对地球的引力作用使地球上的海洋、大气产生潮汐现象,也使固体地球(在某种程度上是个弹性体)发生弹性形变,这就是所谓“固体潮”。

三、质量和重力加速度

地球的质量为5.976×l027克,这是根据万有引力定律测定的。地球质量的确定提供了测定其他天体质量的依据。从地球的质量可得出地球的平均密度为5.52克/厘米3。地球上任何质点都受到地球引力和惯性离心力的作用,二者的合力就是重力。重力随高度递增而减小,也随纬度而变化。赤道上的重力加速度为978.伽(厘米/秒2),两极处为983.2伽。有些地方还会出现重力异常现象,这反映出地球内部物质分布的不均匀性。重力异常同地质构造和矿床有关。地球因受到日、月引潮力的作用,它的重力加速度也有微小的周期变化,最大的可达十分之几毫伽。

四、构造

地球可以看作由一系列的同心层组成。地球内部,有核、幔、壳结构。地球外部,有水圈、大气圈,还有磁层,形成了围绕固态地球的外套。磁层和大气圈阻挡着来自空间的紫外线、X射线、高能粒子和众多的流星对地面的直接轰击。

地球表面十分之七以上为蓝色的海洋所覆盖,湖泊、江河只占地球表面水域很少的部分。地球表面的液态水层,叫做水圈,从形成至今至少已有30亿年。地球的表层由各种岩石和土壤组成,地面崎岖不平,低洼部分被水淹没成为海洋、湖泊;高出水面的陆地则有平原、高山。地球固体表面总垂直起伏约为20公里,它是珠穆朗玛峰顶(据中国登山队1975年测定,珠穆朗玛峰海拔高度为8848.13米)和最深的海洋深度(马里亚纳海沟深度约11公里)之间的高差,它超过大陆地壳平均厚度的一半。洋底象陆地一样不平坦,也不平静。洋底岩石年龄要比陆地年轻得多。陆地上大多数岩石的年龄小于二十几亿年。陆地上到处可以找到沉积岩,说明在远古时期这些地方可能是海洋。地表虽有少量的环形山,但难以找到类似月球、火星和水星那样多的环形山,这是因为地球表面受到外力(水和大气)和内力(地震和火山)的作用,不断风化、侵蚀和瓦解的结果。

长期以来,人们认为地壳构造运动主要表现为地面的隆起和沉降,以垂直运动为主,水平运动是次要的。近十多年来,愈来愈多的科学家认为,地球上部不仅有垂直运动,而且还有更大的水平运动,海洋和大陆的相对位置在地质时期也是变化着的。

1912年伟格纳提出大陆漂移假说。此后,有的地质学家认为,地球早先存在两块古大陆——南半球的冈瓦纳古陆和北半球的劳亚古陆。但在很长时期里许多科学家拒绝承认大陆漂移假说,因为当时人们很难相信有这么大的力量把原先的大陆块撕开,使各碎块分别逐渐漂移到今天的位置。六十年代初,黑斯和迪茨提出了洋底扩张假说,认为全球大地构造是洋底不断扩张的直接结果。正是由于洋底扩张假说和板块运动理论的发展,又使大陆漂移学说重新受到重视。

地球最上层约几十公里厚的一圈是强度很大的岩石圈,其下几百公里厚的一层是软流层,强度较小,在长期的应力作用下这一层的物质具有可塑性。岩石圈漂浮在软流圈上。在地球内部能量(原始热量和发射性热)释放时,地内温度和密度的不均匀分布,引起地幔物质的对流运动。地幔对流物质沿着洋底的洋中脊的裂隙向两侧方向运动,不断形成新的洋底。此外,老的洋底不断向外扩张,当它们接近大陆边缘时,在地幔对流向下拖曳力的作用下,插入大陆地壳下面,致使岩石圈发生一系列的构造运动。这种对流作用可使整个洋底在三亿年左右更新一次。岩石圈被一些活动构造带所割裂,分成几个不连续的单元,称为大陆板块。勒比雄把全球岩石圈分成六大板块:欧亚板块、美洲板块、非洲板块、太平洋板块、澳洲板块和南极板块。海底的扩张导致大陆板块发生运动。板块的相互挤压造成了巨大的山系,自阿尔卑斯山经过土耳其和高加索,最后到喜马拉雅山的山系正是属于这种情况;也有的地方,两个板块的岩石同时下沉,造成洋底的深渊,此外,板块的运动还造成了火山和地震。关于板块运动的理论,目前还在不断发展之中,同时也存在许多有争论的问题。

五、起源和演化

对地球起源和演化问题进行系统的科学研究始于十八世纪中叶,至今已经提出多种学说。现在流行的看法是:地球作为一个行星,远在46亿年以前起源于原始太阳星云。它同其他行星一样,经历了吸积、碰撞这样一些共同的物理演化过程。地球胎形成伊始,温度较低,并无分层结构,只是由于陨石物质的轰击,放射性衰变致热和原始地球的重力收缩,才使地球温度逐渐增加。随着温度的升高,地球内部物质也就具有越来越大的可塑性,且有局部熔融现象。这时,在重力作用下物质分异开始,地球外部较重的物质逐渐下沉,地球内部较轻的物质逐渐上升,一些重的元素(如液态铁)沉到地球中心,形成一个密度较大的地核(地震波的观测表明,地球外核是液态的)。物质的对流伴随着大规模的化学分离,最后地球就逐渐形成现今的地壳、地幔和地核等层次。

在地球演化早期,原始大气逃逸殆尽。伴随着物质的重新组合和分化,原先在地球内部的各种气体上升到地表成为第二代大气,后来,因绿色植物的光合作用,进一步发展成为现代大气。另一方面,地球内部温度升高,使内部结晶水汽化。随着地表温度逐渐下降,气态水经过凝结、降雨落到地面形成水圈。约在三、四十亿年前,地球上开始出现单细胞生命,然后逐步进化为各种各样的生物,直到人类这样的高级生物,构成了一个生物圈。

火星,太阳系九大行星之一,按距离太阳由近到远的顺序排列第四。中国古代称荧惑。火星外观呈火红色,亮度变化明显,视星等在+1.5等到-2.9等之间。卫星两颗,由霍耳在1877年火星大冲时发现。火星公转轨道椭圆形,轨道面与黄道面的交角为1.9°,轨道半长径约为1.524天文单位,轨道离心率为0.093。由于离心率较大,火星的近日距和远日距相差4200万公里,因此火星冲日时与地球的距离有较大的变化。火星的公转周期为686.980日,平均轨道速度为24.13公里/秒。火星自转周期为24小时37分22.6秒,赤道面与公转轨道面的交角为23°59′(比地球稍大),因此火星上也有明显的四季变化。火星赤道半径为3395公里,是地球的53%,体积为地球的15%,质量为6.42×1026克,为地球的10.8%,平均密度为3.96克/厘米3,表面重力加速度为地球的38%。火星大气比地球大气稀薄得多,主要成分是二氧化碳(95%)、氮(3%)、氩(1-2%),水汽和氧的含量极少。火星表面大气压为7.5毫巴,相当于地球上30-40公里高空的大气压。尘暴是火星大气中独有的现象,小规模的尘暴经常出现。每个火星年还会发生一次席卷全球的大尘暴。火星表面的大部分地区被红色的硅酸盐、赤铁矿等铁的氧化物及其他金属化合物覆盖,因而显出明亮的橙红色。火星表面的温度比地球低30℃以上,昼夜温差常超过100℃。在火星赤道附近,最高温度为20℃左右,两极地区的最低温度可达-139℃。火星表面有众多的环形山、火山和峡谷。北半球主要为巨大的火山溶岩平原和一些死火山;南半球到处崎岖不平,环形山星罗棋布。火星上不存在液态水,但有几千条干涸的河床,最长的约1500公里,宽60公里,这说明以前火星上可能有过大量的液态水。火星两极地区被白色极冠覆盖。极冠是火星表面最显著的标志,它的大小随季节变化,处于夏天的半球极冠的范围不大,而处于冬天的半球极冠可延伸到纬度60 °处。极冠由冰和固态二氧化碳(干冰)组成,温度在-70℃到-139℃之间,由于二氧化碳随温度的变化不断的气化和凝结,使得极冠的大小不断变化。极冠中大约保存有大气中20%的二氧化碳,水的含量比大气中多得多,如果极冠中的冰全部融化成液态水,可以在火星表面形成一个10米厚的水层。极冠于17世纪由荷兰物理学家惠更斯发现。火星在许多方面都与地球相近,有被大气包围着的固体表面,有四季的交和季节的变化,它的极冠夏天缩小,冬天扩大,像是冰雪的消融和冻结,火星表面的颜色也随季节发生变化,像是植物的生长和凋零,19世纪末,观测到火星上面有“运河”。因此火星上是否有生命,甚至是否有象人一样的高级生命成了人们非常感兴趣的问题。

20世纪60年代,火星探测器发回的资料证明所谓“火星运河”是人眼的错觉造成的,它们实际并不存在。火星表面颜色随季节的变化是一种纯粹的气象现象,火星表面是一个极为荒凉的世界,没有液态水,大气极为稀薄,而且十分寒冷,是不适于生命存在的。

1976年,“海盗”1号、2号探测器在事先选定的火星上最有希望存在生命的地区软着陆,采集了土样,土样在实验过程中发生了某种变化,但无法确定这种变化是由微生物的新陈代谢引起的,还是土壤中某种化学过程的结果。因此,现在还不能完全排除火星上存在低级生物的可能性。

木星,太阳系九大行星中最大的一颗,按离太阳由近及远的次序为第五颗。中国古代就认识到木星约12年运行一周天,而把周天分成十二份,称十二次,木星每年行经一次,用木星所在的星次可以纪年,因此木星被称为岁星。是天空中的第三亮星,最亮时达-2.4等,只有金星和冲日时的火星比它亮。木星有众多的卫星,截止到1990年,已发现16颗。

1979年,行星际探测器“旅行者”1号还发现木星有一个很暗的光环。木星在椭圆轨道上绕太阳运行,轨道半长径为5.205天文单位,离心率为0.048,它在近日点同太阳的距离比远日点近约0.5天文单位。木星的轨道面与黄道面的交角很小,只有1.3°。木星绕太阳公转的周期为4332.589天,约合11.86年,平均轨道速度为13.06公里/秒。木星是太阳系内自转最快的行星,赤道上自转周期仅9小时50分30秒,两极地区的自转稍慢。由于高速自转,使得它的扁率相当大,达0.0648。木星的自转轴几乎是垂直于公转轨道道的,二者的交角达86°55′。木星的赤道半径为71400公里,是地球的11.2倍,体积是地球的1316倍;质量为1.9×1030克,比地球的质量大300多倍,是其他八大行星总质量的2.5倍,平均密度只有1.33克/厘米3,赤道上的重力加速度为27.07米/秒2,两极为23.22米/秒2。木星有着浓密的大气,主要成份是氢和氦,还含有少量的氨、甲烷和水。用望远镜观测木星,可以看到大气中有一系列与赤道平行的明暗交替的云带,云带的形状随时间不断变化。这表明木星大气中存在着激烈的运动。木星表面的温度很低,根据理论计算,它表面的有效温度应为105K,但地面观测和行星际探测器测得的结果均高于理论值,对木星的红外观测也表明,木星辐射的热能为它接收到的太阳热能的两倍,这说明木星内部存在着热源。木星还有着比地球更大更强的磁层和辐射带。木星磁层比地球磁层大100倍。它可分为三个区域。内区(离木星表面20个木星半径的范围内)具有与地球辐射带相近的强辐射带;中介区(从20个木星半径到100个木星半径)的磁力线被离心力歪曲。内区和中介区都按约10小时的自转周期转动。外区(60-90个木星半径范围内)的磁场很弱,到磁层边界处已趋于零。除很靠近木星表面的部分外,木星的磁场是偶极场,但场的方向与地磁场相反,即地球上指北的罗盘到木星上变为指南。木星的磁轴与自转轴间的交角为10.8°。离木星3个木星半径以内的磁场是4极或8极的,场强为3-11×10-4特斯拉。木星表面大红斑,位于赤道南侧,长达2万多公里,宽约1.1万公里,略呈蛋形。发现于1660年,300多年来尽管它的颜色和亮度不断变化,但形状和大小几乎没有变,大红斑沿逆时针方向绕中心转动,而且在经度方向上有漂移运动,因而肯定不是固体的表面特征。现在认为它很可能是一个大旋涡,或者说它是一团激烈上升的气流。旋涡或气流中含有红磷化合物,大红斑的颜色可能是因此产生的。至于大红斑能长期存在的原因,目前尚不清楚。

土星,太阳系九大行星之一,按离太阳由近及远的次序为第六颗。中国古代称填星或镇星。

1871年发现天王星之前,土星一直被认为是离太阳最远的行星。土星有较多的卫星,截止1990年已发现了23颗,它还有易见的光环。土星绕太阳公转的轨道是离心率为0.055的椭圆,轨道半长径为9.576天文单位,即约为14亿公里,它同太阳的距离在近日点时和在远日点时相差约1天文单位。公转轨道面与黄道面的交角为2.5°。公转周期为10759.2天,即约29.5年。平均轨道速度为每秒9.64公里,自转很快,自转角速度随纬度变化,赤道上自转周期是10小时14分,纬度60°处为10小时40分,高速的自转使土星呈明显的扁球形,极半径只有赤道半径的91.2%,土星的赤道面与轨道面的交角为26°44′。土星的赤道半径为60000公里,是地球的9.41倍,体积是地球的745倍。质量为5.688×1029克,是地球的95.18倍。在九大行星中,土星的大小和质量仅次于木星,居第二位。平均密度只有0.70克/厘米3,比水还低。由于土星的大半径和低密度,它表面的重力加速度与地球表面相近。土星的大气以氢、氦为主,并含有甲烷和其他气体。大气中飘浮着由稠密的氨晶体组成的云,有彩色的亮带和暗纹,但比木星大气中的云带规则。土星表面温度约为-140℃,云顶温度为-170℃。行星探测器“先驱者”11号发现土星上有一个由电离氢构成的电离层,电离层温度约为977℃。土星也有磁 br>

参考资料:

《神秘的宇宙》

众多行星在高速转动,那它们的动能都是哪里来的?

答:中子星的直径不大,所以表面线速度并没有超过光速。

中子星是由中子紧紧挨在一起组成的天体,所以中子星密度基本就是原子核的密度,高达2亿吨每立厘米;根据钱德拉卡极限和奥本海默极限,中子星质量在1.44~3倍太阳质量之间,由此可以估算出,中子星的半径在10~20公里之间。

自转速度n=700转每秒的中子星,假设中子星半径r=20公里,我们可以算出中子星的表面线速度v:

v=2πr*n=8.8万公里每秒;

光速c=30万公里每秒,所以这颗中子星的表面线速度只是光速30%,并没有超过光速;实际上,绝大部分中子星的半径,还达不到20公里,表面线速度也没有这么高。

之所以中子星的自转这么快,是因为大质量恒星在超新星爆发时,内核体积瞬间缩小为原来的几十亿分之一,内核塌缩形成的中子星继承了原恒星的绝大部分角动量,半径缩小的结果就是自转速度加快。

对于刚形成的中子星来说,自转速度是非常快的,一般都高达每秒几十圈到上百圈;随着中子星向外辐射能量,自转动能和角动量逐渐减小,自转速度也会减慢。

刚形成的中子星,温度高达数百亿度,然后温度会在数分钟之内,降低到几十亿度,再经过数千年的时间冷却到几百万度,最后经过数百亿年冷却为黑中子星。

中子星的直径比地球小。

感谢提问!要解答这个问题,我们至少需要搞清楚题中关于地球周长、光速、中子星等几个概念性的问题,下面且看小地作答!

1、光速定义及数值

光速是指光波在真空或介质中的传播速度,它是目前世界公认的自然界物体运动的最大速度,每秒钟可运行299792.458km(约为30万千米/s)

2、地球简况

地球是一个不规则的椭圆球体(下文按正球体计算),它是距离太阳第三近的行星,其质量、密度和大小排在四大类地行星之首,分别为M=5.965E+21(t)、ρ=5.50785T/m 、 =12756(km),根据圆周长计算公式C=πd=2πr可求得环绕地球一周的长度C=3.14*12756=40053.84千米。

通过上述列举的各类数据,我们可以计算出光在一秒钟之内可以围绕地球299792.458/40053.84=7.48圈,接近题主所说的7圈半。那么中子星每秒可旋转700圈,是不是就超光速了,这个就要看中子星的大小了。

3、中子星是何物?

记得早在读小学四年级的时候,就听到有人说假如一个针尖大小的中子星物质掉到地面上,足以把地面压塌,那是年幼还不知所以然,随着知识和阅历的增多,渐渐对天文地理产生了浓厚的兴趣,对中子星也多了一些了解。

中子星一种介于黑洞和白矮星之间的星体,其密度大小仅次于黑洞,它是由恒星演化而来,一般来说由于质量的不同恒星死亡的结果有三个,矮星、中子星以及黑洞。

我们都知道,恒星在演化的末期,也就是由主序星阶段变为红巨星,恒星在红巨星阶是非常短暂的,这期间会很快消耗掉氦,由于其内部没有足够的聚变物质与引力抗衡,恒星会向内部迅速坍塌,并引发更多的聚变,直到所有原子聚变为铁,由于铁原子核是最稳定的,不论聚变还是裂变都不会释放能量,恒星至此失去了能量来源,会在引力的作用下迅速撞向核心并反弹,形成超新星爆炸。

超新星爆炸有三种可能,也就是恒星的三种死亡结果,其一是对于质量不大的恒星形成矮星;其二是对于质量中等的恒星,由于电子被压入原子核与质子结合转化为中子,形成中子星;其三是对于质量更大的恒星,即便是中子也无法支撑自身的重力就会形成黑洞。

一般认为,中子星的密度与原子核的密度相当,约为每立方米4.39805E+12~1E+15吨(t),按照平均密度5.02199E+14计算,其密度约为地球的9.11788E+13倍,如果把地球按照这个密度压缩,被压缩的体积差不多与热气球一样大,直径约为22米的大球。

再根据周长计算公式,可求得该中子星的周长约为70米,那么该颗中子星每秒转700圈,就相当于每秒转速为700*70=49000米=49千米,其速度还不及光速的万分之一点六,可见中子星的自转转速也不算高。

光速飞行每秒可绕地球7圈半,意味着地球如果每秒自转7圈半,其表面赤道的线速度就达到光速了,更别说700圈了。算算也是,地球周长约4万公里,乘上7.5刚好等于30万公里。

光速是物体运动的最高速,这是宇宙的最高法则,相对论光速不变原理已经讲的很清楚了,并且也为大量的观测所证实。因此如果真有中子星每秒钟转700圈,那中子星的直径应该远远小于地球的12756公里,

中子星不可能有地球这样大

据研究表明,中子星是恒星的演化末期产物,是恒星内部核聚变停止后,失去抵抗自身引力的作用,进而急剧坍缩发生超新星爆发,

中心部分物质原子的核外电子在强大引力作用下全部压进原子核中的质子,最终形成全部由中子组成的中子星。这样中子星的密度惊人,达到每立方厘米1亿吨,因而中子星的直径大多在10到30公里之间(法兰克福歌德大学最新研究,最小中子星直径仅为1.5公里),一个太阳质量大小的中子星直径只有10公里,且质量越大直径越小。由于角动量守恒,随着恒星收缩形成中子星的过程,星体越转越快。大多中子星的自转轴和磁轴有一定的角度,在星体旋转时射电脉冲像灯塔扫过天幕,所以旋转的中子星又叫脉冲星。

如果中子星直径按30公里算,周长90多公里,每秒转700圈,线速度还不到7万公里/秒。离着光速远着呢。 因此中子星即使每秒转700圈也超不了光速。

这个问题是把中子星看得太大了。中子星其实是一颗很小的恒星尸骸,其转速再快,也超不过光速。

中子星一般半径约10公里,也就是20公里左右的直径,周长也就是60几公里,每秒钟转1000圈也就6万多公里,怎么会超过光速呢?

中子星是大于太阳质量8倍以上的恒星,演化末期发生超新星大爆炸留下的残骸,是恒星把外围物质炸飞了留下的中心那点核,质量不得超过太阳质量的3.2倍(这个数据尚无最终准确定论),这个叫做奥本海默极限,超过这个极限就做不成中子星,会继续坍缩成一个黑洞。

但中子星的质量下限是比较准确的,叫钱德拉塞卡极限,就是白矮星的最大极限不得超过太阳质量的1.44倍,超过这个质量就必然会坍缩成一个中子星。

因此中子星是一个密度极高的星球,目前已知除了黑洞,还没有什么星球有这么大的密度。其上的物质是一种被超高引力压力高度压缩的特殊物质,原子被压碎,电子被压到了原子核,与质子合并成为中子,加上原来原子核的中子,整个星球就是一个大中子核。

这个大中子核的密度达到每立方厘米1亿~20亿吨,你如果不信,稍微计算一下就知道了,1.44倍~3.2倍太阳质量,压缩到一个20公里直径的球里,质量除以体积就能够得到其密度了。

因为中子星的转速是继承了恒星爆炸前的角速度,越小就越快,因此一个巨大的恒星变成这样一个小球,当然转速就非常高了。

现在发现最高转速的中子星(会转的中子星又叫脉冲星)是一个叫PSR0535-69的脉冲星,距离银河系16万光年,其转速高达每秒1968转!

即便如此,其赤道线速度也达不到光速,据称这个脉冲星半径约20公里,这样其赤道线速度达到甚至超过了0.8倍光速!

即便如此,也没有超过光速,并没有违背相对论光速藩篱原则。

中子星是一种特殊极端的星球,我们只能远远的研究它,利用它(导航),永远也无法靠近它,更别说去上面取一小块物质了(许多人幻想弄一块到地球会咋样)。

地球自转赤道线速度为每秒466米,只是脉冲星的几十万分之一,就不要去比了。

时空通讯专注于老百姓通俗的科学话题,欢迎一起探讨。 本号发表的所有文章均属原创,请尊重作者版权,谢谢关注支持。

光在真空中的传播速度大约为每秒30万公里,地球周长大约4万公里,换算下来,光速也就相当于地球每秒转7圈半时的线速度。而自转最快的中子星每秒甚至达到了2000圈的速度。所以我们会好奇中子星赤道附近的速度有没有超过光速呢?

其实并没有,如果中子星的体积和地球那么大,那肯定超过了光速。而事实上中子星的体积都特别小,半径基本都在20公里以内。是除黑洞以外,密度最大的天体,达到了水的密度的100万亿倍。如果把地球压缩成这样,直径将只有22m。

正是由于中子星体积很小,所以看似2000转的角速度,如果按20公里的直径算,线速度大约是25万公里每秒,与光速还是有一定的差距。中子星并没有超光速。

其实,关于这个问题涉及到了中子星具体的情况,我们可以先来了解一下中子星到底是咋来的。

宇宙中会发光的基本上都是恒星。而恒星之所以会发光是因为核聚变作用。整个核聚变有点类似于氢弹爆炸的原理。

但是你发现没有?恒星一般都不会直接炸掉,而是特别稳定地在发光。那这到底是咋回事呢?首先,恒星之所以会发生核聚变,是因为恒星在形成初期,星云物质在引力作用下逐渐形成早期的恒星胚胎,然后由于自身引力特别大,恒星胚胎中心的温度会比较高,当达到一定程度时,加上量子隧穿的效应。氢就会被点燃,发生核聚变反应。

恒星内部核聚变只要有两种方式,一种叫做质子-质子反应链,也被叫做P-P链。

还有一种叫做碳氮氧循环,是以少量的碳氮氧作为催化剂。

整个反应的过程其实都是在恒星核心处,反应前后是氢聚变成了氦-3。

但是,毕竟一个恒星的氢也是有限的,不可能不无限量的烧下去 ,所以其实开始发生核聚变的核心被我们成为主序星。主序星时期是非常稳定的,自身的引力和核心核聚变产生的向外压力形成了动态平衡。

如果核心温度高了,那核聚变就会占上风,恒星核心就会稍稍膨胀,使得温度降低。同理,如果核心温度低了,那引力占上风,就会压缩恒星核心,这时温度就会上高,和核聚变就会剧烈。

但是恒星毕竟是燃烧自己照亮别人,时时刻刻都在向外辐射能量,根据爱因斯坦的质量方程,

我们可以得知,就拿太阳来说,每秒要损失400万吨的质量。随着时间的推移,质量大幅度降低,这时候引力对于核心核聚变反应的控制力就会逐渐下降。还是拿太阳来说,作为主序星大概燃烧100亿年,就没办法控制住自己,膨胀成一颗红巨星。

在整个阶段,核心还继续烧着氢,直到烧得差不多,然后继续烧氦……

直到铁元素,铁元素的核聚变反应所需要的能量比产生的能量还要大,因此入不敷出,没办法进行下去,所以铁是一道坎,很难迈过去。不过,如果此时剩余的质量还很大,在引力的作用下就有可能发生超新星爆炸。

这一炸,一大堆物质就会倍抛洒到太空当中。剩余的物质在引力的作用下,要么形成中子星,要么形成黑洞。这里补充一句,根据目前的理论,介于1.44倍太阳质量到3.2倍太阳质量,则可能是中子星,而大于3.2倍太阳质量,就可能产生黑洞。

所以,你发现没有?其实整个过程,恒星都一直在向外抛洒物质,而核心在引力地作用下不断收缩。这就注定了,中子星个头肯定不会很大。

那真实的情况是什么样的呢?

中子星一立方厘米的物质便可重达十亿吨,这个密度之大是人类的想象力很难想象到的 ,举个例子,如果你有个勺子,上面有一勺中子星物质,那这勺子中子星物质就大概得有5吨。

一般来说,一颗脉冲星的质量介于1.35倍太阳质量到2.1倍太阳质量,半径也就在10到20公里的范围内。因为形成前后要保证角动量守恒,但是半径又只有母恒星的一点,所以,中子星一般旋转速度特别快,所以也被人称为脉冲星。

一般来说,周期从毫秒级到30秒左右的都有。其中毫秒级的,也就是传说中一秒可以转700圈的也确实存在,但是它真的超光速了么?

我们其实可以来算一算,一般来说,转的越快,其实转动惯量就越小,所以肯定也不会大到哪里去。不过,我们就按常规中子星的大尺寸的来算,也就是20公里的半径。那周长就是125.6公里, 700圈就是8.8*10^4公里/秒,也就是8.8*10^7米/秒,而光速时3*10^8米/秒,这还远远不到光速。

因此,即使都往大了进行估算,中子星的线速度还是远远小于光速的,因此,并没有超光速。

所以,不要把中子星想象得像地球那么大,其实中子星和地球比起来,真的时小很多很多,地球得直径可以达到12756公里,比中子星直径大量3个数量级,所以把地球的尺寸带进去当然会超光速。

中子星每秒可旋转700圈,但是它的直径太小,速度可达不到光速

中子星是大质量的恒星演化到后期的产物,它是除黑洞以外密度最大的星体,当恒星内部的核燃料消耗殆尽的时候,经由重力坍缩发生超新星爆炸之后形成。在中子星里已经没有完整的物质结构存在,中子简并支撑着中子进一步压缩,最终形成中子星。一般来说中子星的体积都不会特别大,半径大概在10-20公里左右,那么可以根据线速度公式来算一下中子星的线速度,线速度的公式是v=2πrn,这样一算,转速为700圈的中子星的线速度才不到九万公里。光速是每秒30万公里,可以说离光速还是有点差距。

而地球的自转则是更加慢,在赤道地区的线速度大概是460多米/s,这样的速度跟光速还差得远呢!光速不可超越已经是一个公认的定理了,当星球的体积越大,其自转速度也就慢了下来,所以说地球相比于中子星,线速度更加慢,宇宙中也不存在星体的自转可以超光速的现象。

地球和中子星的密度差别简直是天上地下,我们的地球只是一个普普通通的岩石金属行星,而中子星是由大质量恒星晚年的核心区域坍塌而成的,其密度高达每立方厘米10亿吨,但也正因为如此高的密度,中子星的体积一般都不会太大。

一颗典型的中子星直径不过几十公里,每秒30万公里的光速一秒钟绕它几百圈也属于很正常的事,光速一秒钟绕地球七圈半只不过是因为赤道周长4万公里而已。

我们宇宙中的极端天体基本上都和恒星有关系,太阳这种黄矮星晚年膨胀为红巨星再进一步就会坍塌成一颗白矮星,密度虽然没有中子星那么恐怖但每立方厘米也有十吨左右,而中子星只是白矮星在引力作用下进一步坍塌的结果,如果引力再大一点的话中子星还会坍塌成密度更大体积更小的夸克星,夸克星再进一步坍塌就是黑洞了。

在我们的宇宙中并不存在超光速现象,一颗半径20公里的中子星理论上能达到每秒2000转,这样算下来其赤道地区的线速度也才每秒25万公里左右,和真的光速还是有一定差距的。地球上的物理学家曾经在一次粒子实验中测到过超光速的数值,但后来发现只是电缆接松了而已,调整好后超光速数值立马消失了。

其实像中子星这类极端天体,其表面物质只能在中子星上保持其状态,也就是说一旦中子星物质离开中子星,那么原先被强大引力所强行压缩的物质瞬间就会变成普通物质,随之而来的还有强烈的爆炸。

首先,每秒钟旋转多少圈并不是问题的关键,关键是中子星到底有多大,地球和中子星是完全不同的两类星球,当然不能用地球的大小衡量中子星的旋转。

中子星是大质量恒星死亡后的产物,密度非常高,仅次于黑洞,但高于白矮星(太阳死亡之后就成了白矮星),而如果把地球变成中子星,直径就只有22米,而太阳变成白矮星直径只有10公里。普遍认为,中子星的约为16-32公里。

即使是按直径最大的32公里计算,每秒钟旋转700圈,速度也只有每秒8万公里左右(计算并不难),与光速相差很大。

所以,中子星确实很恐怖,但这远不意味着中子星可以超越光速,我们也不能用一种惯性思维去思考中子星的运动。同时,更不能单纯地凭借自己的想象和感觉去下结论,任何结论都要建立在事实基础上。

网络上有些人对于爱因斯坦的光速限制总是感觉不解,甚至不相信,总是以各种想象各种假设试图推翻相对论中的光速限制,比如最常见的“各种如果和假设”,假设一个直径一光年的轮子转动起来不就轻松超越光速了吗?

但事实上类似这种假设没有任何意义,因为假设本身就不存在,或者不会发生。即使存在直径一光年的轮子,也能转动起来,但转动的速度也不会超越光速,就类似地球和太阳甚至银河系等天体的旋转一样!

恒星与行星的区别

宇宙间的所有物质,所有天体都在运动中,恒星和行星当然也不例外,通常都是行星围绕着恒星转动,而恒星围绕着更大的天体质量中心转动,它们的动能和运动趋势来自于本身原始物质的运动趋势,但也有之后与其他天体撞击融合时得到的动能和形成的运动趋势。

恒星和行星都有着不同的形成过程,这也导致它们的运行速度有快有慢,12月24日,中科院国家天文台公布了一份天文观测研究成果,该台一个天文研究团队通过我国郭守敬望远镜和欧洲航天局盖亚空间望远镜的观测数据发现了591颗正在高速飞奔的恒星,是有史以来发现高速星最多的一次,之前科学家们一共发现了550颗高速星,所以这一次公布的数据使得科学家们已经发现的高速星的数量翻倍。

每个恒星都在运动中,太阳的运行速度高达每秒250公里,然而这样的速度只能上中规中矩,高速恒星的门槛是每秒钟400公里,太阳的运行速度与之相比还是有一定距离的。

在这近六百颗的高速星中,最快的一颗奔跑速度甚至达到了每秒1700公里, 比炮弹出膛时的速度(一般为700~1500米)还快2000多倍,研究者们预估这颗恒星最终将飞出银河系成为流浪恒星,与它有着相似命运的恒星,还有42颗,这也是因为他们的速度都很快,超过了银河系引力束缚的第四宇宙速度(不同位置恒星所需要的速度不同,地球附近这一速度为每秒钟550公里)。

银河系看上去如同一片漩涡状的烟云,虽然每个人终其一生都感觉不到它的形状有什么变化,但实际上它是一直处于变化之中的,太阳需要用2.5亿年才能围绕银河系运行一周,所以用人生100年的时间来感悟银河系的变化,是看不出有多大差别的,而如果用千万或亿万年的时间看它的变化,那它的变化还是很明显的,恒星的位置基本都会有很大的移动,有些恒星加入了银河系,也有些恒星逃离了银河系。

恒星要逃离银河系,必须获得极大的动能,因此能逃离银河系的恒星,一定都经历过较大的“波折”,其中有很多应该是受到黑洞或大质量恒星在特殊情况下的引力加速效应(一般至少需要两个天体的双重引力),或者是受到相互绕行的恒星的超新星爆发的推动作用,所以恒星要想逃出银河系可并不容易呢,这也是高速星在银河系中非常稀少的原因!

太阳绕银河系转一圈需要多长时间

行星通常指自身不发光,环绕着恒星的天体。其公转方向常与所绕恒星的自转方向相同。一般来说行星需具有一定质量,行星的质量要足够的大且近似于圆球状,自身不能像恒星那样发生核聚变反应。

恒星是由引力凝聚在一起的一颗球型发光等离子体,太阳就是最接近地球的恒星。在地球的夜晚可以看见的其他恒星,几乎全都在银河系内,但由于距离遥远,这些恒星看似只是固定的发光点。历史上,那些比较显著的恒星被组成一个个的星座和星群,而最亮的恒星都有专有的传统名称。

恒星:

最亮的恒星:天狼星A;

离太阳系最近的恒星:比邻星;

最亮的超新星:金牛座超新星;

星体最大的恒星:美国天文学家于2005年1月发现的三颗呈红色且十分明亮的恒星;

引力最强的星体:黑洞;

最古老的恒星:黑矮星(人类了解范围内);

自转速度最快的星体:脉冲星。

行星:

质量最大的行星:木星(约为其余八大行星质量总和的2倍);

拥有光环的行星:土星木星天王星海王星;

公转最快的行星:水星(88天);

最大的行星:木星;

卫星最多的行星:土星;

距地球最近的星球:月球;

肉眼看到最亮的行星:金星;

最早被计算出来的行星:海王星;

最美丽的行星:土星(太阳系内);

自转最快的行星:土星;

自转最慢的行星:金星(比公转还慢)。

北斗七星在不在银河系里呢?

而太阳绕银河系一圈则需要2.5亿年。

太阳围绕银河系中心转一圈大约需要195043948个小时,太阳在围绕着银河系中心公转,并且它的公转速度比地球更快,在宇宙空间中,太阳每小时前进79.2万公里。

地球围绕太阳公转的同时,太阳也在携带着太阳系的众多天体高速运行。由于太阳的公转轨道与地球的公转轨道不在一个平面,它们之间存在着一个大约60度的夹角

简介

天文学家将太阳围绕着银河系中心公转一圈的时间称为“银河年”,而我们知道,太阳诞生于大约46亿年前,也就是说,太阳目前正在度过第21个“银河年”。

太阳不仅会自转,也会公转。太阳是银河系较典型的恒星,位于银河系猎户座旋臂,离星系中心25000至28000光年。太阳公转是太阳绕银河系的质心,银心所作的运动。

当然在啊,人类肉眼可见的所有星星都在银河系里面,唯一肉眼可见的河外天体是仙女座星系,而且必须是在天气晴朗的野外,视力较好的人才可以看到。所以北斗七星都在银河系内

在夜空中,只有仙女座星系、三角座星系以及大、小麦哲伦星云这四个呈现出云雾状的天体是肉眼可见的河外星系,其他肉眼可见的星星都是在银河系之内,并且它们与地球相距大都不超过1000光年(银河系半径5万光年),这其中就包括著名的北斗七星。在现代天文学的88个 星座 中,北斗七星是大熊座的一部分,它们与地球的距离大约都为100光年。

天枢

天枢距离地球123光年,它的质量为太阳的4.3倍,半径为太阳的32倍,视星等为1.8等。天枢目前已经耗尽核心的氢燃料,离开主序阶段而膨胀成红巨星。此外,天枢还有一颗伴星——大熊座α星B,它的质量约为太阳的1.6倍。

天璇

天璇距离地球80光年,它的质量为太阳的2.7倍,半径为太阳的3倍,视星等为2.4等。从天璇向天枢延伸出一条假想的直线,可以指向北极星,这是寻找北极星的便捷方法。

天玑

天玑距离地球83光年,它的质量为太阳的2.9倍,半径为太阳的3倍,视星等为2.4等。这颗恒星的自转速度很快,赤道的自转速度估计为178千米/秒,约为太阳的90倍。天玑也有一颗伴星——大熊座γ星B,它的质量约为太阳的80%。

天权

天权距离地球58光年,它的质量为太阳的1.6倍,半径为太阳的1.4倍,视星等为3.3等,这是北斗七星中最暗淡的一颗。天权属于一个三合星系统,它的两颗伴星——大熊座δ星B和大熊座δ星C都非常暗淡。

玉衡

玉衡距离地球83光年,它的质量为太阳的2.9倍,半径为太阳的4.2倍,视星等为1.8等。根据最近的一项研究,玉衡的周围可能环绕着一颗质量为木星15倍的亚恒星天体。

开阳

开阳距离地球83光年,视星等为2.3等。在这颗恒星旁边还有一颗较为暗弱的恒星——辅,曾被古人用于测试视力。此外,开阳与另外五颗恒星组成了一个六合星系统。

瑶光

瑶光距离地球104光年,它的质量为太阳的6.1倍,半径为太阳的3.4倍,视星等为1.9等。这是一颗B型主序星,才刚刚形成1000万年。

北斗七星在不在银河系里呢?

可以肯定的告诉各位,肉眼所见的除了超新星和几个深空天体外,单个可见的恒星都在银河系内,而且就在直径不超过数千光年的位置。

咱人类是不是有些可悲哈,宇宙那么大我们肉眼所能看到的星星也就这么点!咱回过头来说说北斗七星:

北斗星七星的名字分别是:摇光、开阳、玉衡、天权、天玑、天旋和天枢以及各自对应的位置

北斗一,天枢 距离: 124±2 光年

北斗二,天璇 距离: 79.4±1.1 光年

北斗三,天玑 距离:83.7±1.4 光年

北斗四,天权 距离:81.4±1.2光年

北斗五,玉衡 距离: 80.9±1.2 光年

北斗六,开阳 距离: 78.2±1.1 光年

北斗七,摇光 距离: 101±2 光年

银河系直径达16万光年,毫无疑问这些恒星统统都在银河系以内!当然要提醒一下各位的是不要将北斗七星和北极星搞混了。

绿色箭头所指的才是北极星哦

北斗星与樱花,那个大勺子应该不用提醒了!

八大行星的资料_银河系自转最快恒星