首页 > 数码科技 > 抽屉原理是什么_什么是抽屉原理

抽屉原理是什么_什么是抽屉原理

栏目:数码科技

作者:B姐

热度:0

时间:2024-02-27 10:07:05

抽屉原理是“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

一、第一抽屉原理:

1、原理1:

把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。

2、原理2:

把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

二、第二抽屉原理:

把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。

三、表现形式:

1、设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。证明:(反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1。

2、设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。证明:(反证法)假设结论不成立,即对每一个ai都有ai

抽屉原理的表述及运用:

一、表述:

在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。

任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

二、运用:

运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有一个属相是不少于4个人。这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人。

但这里需要注意的是,前面的余数1和这里加上的1是不一样的,因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。

什么是抽屉原理

抽屉原理是指如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。

抽屉原理的现象是:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。

什么是抽屉原理

01

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的"抽屉原理"。

02

抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

把3个苹果放进2个抽屉里,必须有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它能够解决一些相当复杂甚至无从下手的问题。

03

抽屉原理的一般含义为:"如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。"

04

构造抽屉的方法

运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有几个人属相相同呢 这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。

什么是“抽屉原理”?

抽屉原理(Pigeonhole Principle),也称为鸽笼原理,是一种基本的计数原理,用于确定在给定的一组对象和一组容器之间,如果将每个对象放入一个容器中,则必定存在一个容器,其中包含两个或更多的对象。

抽屉原理可以表示为:如果有n个物体和m个抽屉,其中$n>m$,那么至少有一个抽屉里面至少有两个物体。

这个原理可以用于解决许多实际问题,例如:

在一组人中,至少有两个人生日相同。

在一组独特的英文字母中,至少有两个字母具有相同的首字母。

在任何一个长度大于n的整数序列中,至少有两个整数具有相同的余数。

请点击输入描述

抽屉原理是数学和计算机科学中常用的原理之一,被广泛应用于算法设计和分析,数据结构,编程竞赛等领域。

抽屉原理 原理:多于n个的球以任意方式全部放入n个抽屉中,一定存在一个抽屉,它里面有两个或两个以上的球。

1. 任意11个整数中,一定有两个数,它们的差是10的倍数。

2. 设任意n+1个实数在[0

1)中,求证在它们中存在两个数且它们的差少于1。

3. 在前10个自然数中任取6个数,求证:一定存在两个数,其中一个是另一个的整数倍(如果把10改为200,6改为101,则是莫斯科第10届奥林匹克竞赛竞赛题。) 4. 在前91个自然数中任取10个数,求证其中存在两个数,它们相互的比值在[2/3,3/2]内(苏联基辅第49届数学竞赛题)。

5. 任意m个整数,求证:一定可以从找到若干整数,使得它们的和可被m整数(若m=100则是第12届莫斯科奥林匹克数学竞赛题)。

6. 任意给定10自然数,试证明:可以用减、乘两种运算把它们适当连起来,其结果能被1890整除。 其中一种简单的表述法为: 若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。 或者这么说: 若有K个笼子和KN+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。

鸽巢原理,又名狄利克雷抽屉原理、鸽笼原理。 其中一种简单的表述法为: 若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子。 或者这么说: 若有n个笼子和kn+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少k+1只鸽子。 拉姆齐定理是此原理的推广。 抽屉原理 原理一:如果把n+1个元素放入n个 *** 中,则至少有一个 *** 中有2个或2个以上的元素。 原理二:把m个元素任意放入n (m>n) 个 *** 中,则至少有一个 *** 中含有k个或k个以上的元素,其中 (i) k=m 当n能整除m; (ii) k=[m]+1 当n不能整除m。 原理三:把无穷多个元素放入有限个 *** 里,则至少存在一个 *** 中个有无穷多个元素。 例题 在边长为2的正方形中,任意取5点,求证:至少有两个点之间的距离不大于√2。 在边长为1的正方形中,任意放入9个点,求证:在以这些点为顶点的诸多三角形中,必有一个三角形的面积不超过 1/8。 在直径为5的圆中放入10个点,求证:其中必有两个点的距离小于2。 求证:在任意给出的5个数中,必有3个数,其和能被3整除。 任给12个整数,求证:其中必有两个数,它们的和或者差恰是20的倍数。 证明:从任意给定的n个不同的自然数中,总能找到若干个,使它们的和是n的倍数。 求证:在任意给出的12个数中,一定存在8个整数,记为a1

a2

...

a8使得 (a1-a2)(a3-a4)(a5-a6)(a7-a8)能被1155整除。 已知7个自然数a1

a2

...

a7,把它们重新排列后得到b1

b2

...

b7,求证:(a1-b1)(a2-b2)...(a7-b7)为偶数。 在直角坐标系中,把横纵坐标全是整数的点称为整点。在坐标平面上任意给定5个整点,求证:其中一定有两个点,它们的联线中点仍为整点。 求证:在1

4

7

10

...

100中任选20个数,其中至少有不同的两组数,其和全等于104。 从自然数1

2

...

99

100中,任意取出51个数,求证:其中一定有两个数,它们中的一个是另一个的倍数。 任选6个人,试证:其中必有3人,他们相互认识或都不认识。 一个由21个小正方形组成的3x7矩形,任意给每一个小正方形任意涂上红色或蓝色,证明:不论怎样涂色,总可在图中找出一个矩形,它的4个角上的小正方形的颜色相同。 在平面上给出1993个点,并且从中任取3个点,其中就有两个点的距离小于1。证明:存在一个半径为1的圆,它至少包含了给出的1993个点中的997个点。 参考:geo.yahoo/serv s=382076083&t=1166921882&f=-w63 『抽屉原理』是数学名家狄利克雷的著作,是一种重要的思考方法。关键是构造抽屉求出最少的抽屉

抽屉原理是什么_什么是抽屉原理