首页 > 数码科技 > 天然气水合物环境及工程响应_天然气水合物

天然气水合物环境及工程响应_天然气水合物

栏目:数码科技

作者:B姐

热度:0

时间:2024-02-29 09:51:56

(1)天然气水合物的环境效应

天然气水合物对全球碳循环和气候变化具有双重作用:一是水合物中甲烷气直接或通过化学和生物化学以CO2的形式间接释放进入大气;二是低碳的甲烷可替代多碳石化燃料而降低人为温室气体的排放。天然气水合物在自然界中极不稳定,温压条件的微小变化就会引起它的分解或生成。在路易斯安那州海外水深500m以下,拍摄到天然气水合物小丘和丘群,由1992和1993年的录像的对比辨识出一个小丘的消失和另一个小丘的新生。在小于周围连续释放的气流含69.6% CH4、6.3% C2H6、1.7%C3H8、11.4% N2、8%CO2及微量丁烷、戊烷、氧气。在沉积层中,有机质和CO2在细菌作用下可生成大量甲烷,深成作用亦可使地质历史时期埋藏的有机质转化成天然气,在适宜的温压条件下就可形成天然气水合物。另一方面,天然气水合物在温度增高或压力降低就会分解,向大气释放甲烷。由于天然气水合物蕴藏量极大,其甲烷的吞吐量也极大;因此,天然气水合物是地圈浅部一个不稳定的碳库,是全球碳循环中的一个重要环节,在地圈与水圈、气圈的碳交换中起到了重要作用。

甲烷是一种活动性强的温室气体,它对全球气体变暖的影响比相当量的二氧化碳大20倍。更新世时期全球气候变化(海退)引起海陆环境内天然气水合物释放出大量甲烷,这些甲烷气体也反过来引起全球气候变化。全球变暖,冰川及冰盖融化,引起海平面上升;海平面上升造成水下静水压力增大,增大天然气水合物的稳定性,而水温的上升又起相反的作用。对多数陆缘海底天然气水合物来说,水深均大于300~500m,海平面的升降及海底水温变化都对天然气水合物有影响。上述变化也因天然气水合物赋存区所处纬度不同,天然气水合物的稳定与不稳定变化关系也有所差别。对英国人陆架面积约60万km2海域的测量表明,每年逸出而进入大气的甲烷量达12万吨到3.5百万吨,占整个英国甲烷排入量的2%~4%。因此,对广泛分布海底天然气水合物的海区来说,这种排放情况更突出,成为开发利用天然气水合物工作需要先行监测研究的重要课题。

海底的海水温度的升高可能导致水合物的分解和甲烷气体的释放。释放的甲烷气体被加入到全球碳储量中。它可以通过冒泡或者扩散到水柱中、可以通过海水的流动进行水平对流、在水柱中进行化学和生物化学反应、并且如果甲烷气体的释放速度超过了氧化速度将最终通过冒泡进入到大气中。由于这种释放可以导致一种级联效果,对气候影响的潜力非常大。包括大气层的扩大、海洋温度的升高和加速现存的水合物的分解。最近的深海调查发现麻坑等构造说明在过去大量的流体从海底释放出来。水合物的分解和释放是其中的一个可能原因。联合储存器和海洋碳循环模型的数值计算研究表明在百年这个尺度上对气候的变化有明显的影响。最近对海洋温度变化引起的水合物的分解的模拟表明在十年这个尺度上储存较浅的水合物可以释放山数量极大的甲烷气体,而这仅仅需要在水合物储存区的沉积物中增加1℃的热量。相反,对寒冷的深海区的水合物的行为模拟研究并没有显示大范围的不稳定现象或者甲烷气体的释放。

(2)天然气水合物的工程地质响应

Sultan等[2004]对天然气水合物的分解对海底边坡稳定性的影响作了新的研究。他们把温度、压力、孔隙水化学性质以及平均孔隙大小分布等因素考虑进去,对土壤中水合物的热动力学化学平衡进行了研究。模型运用基于能量守恒定律的焓形式的公式,这种改进的模型显示,由于温度和压力的增高,水合物将会在水合物赋存带的顶部分散开以确保同周围的水达到化学平衡,这同试验得出结果一致。并且使用这一模型对挪威大陆边缘的Storegga大滑坡进行了实例分析,在计算中考虑进海平面变化及海水温度变化对静水压力的影响。模拟结果表明天然气水合物的在滑坡的顶部分解,从而打破了以往水合物只在赋存带底部分散的认识。

海底地质灾害是天然气水合物资源开发研究的重要内容。天然气水合物与海底滑坡有关早在20世纪70年代就认识到了。美国大西洋大陆边缘填绘出近200个滑坡,被认为是海平面下降,同压降低,甲烷气体从分解的天然气水合物中游离出来,造成边坡不稳定引起的。

同时,该海域多数滑坡均分布在天然气水合物分布区内或其附近也说明了这一点。在其它海域的海台塌陷也与天然气水合物有关,如西南非洲陆坡和海台、挪威陆缘、波弗特海陆缘、里海、北巴拿马陆架和加拿大纽芬兰。一旦滑坡起动,水合物层之下的游离气就会沿裂隙上升,原米处于亚稳定状态的水合物也将分解释放甲烷气体。研究表明绝大多数大型滑坡与天然气水合物失稳,或者说与崩塌物质在水合物之上“滑翔”有关。海底滑坡与水合物之间二者相互作用,一方面,海底滑坡为天然气水合物的形成提供了丰富的物质条件,有利于水合物的形成;而水合物的形成又对滑塌堆积的松散沉积物起固定作用;另一方面,天然气水合物分解时释放出的气和水增大了孔隙压力,从而使沉积物滑动,又可造成新的海底滑坡。因此,在开发利用海底天然气水合物时应该充分考虑并研究海底地质灾害,设计可行的技术方案。

在海洋堆积物里,天然气水合物形成时能够在孔隙中产生一种胶结作用,致使大陆斜坡带处于明显较为稳定的状态。由于压力和温度条件发生变化而引发天然气水合物释放时,首先会导致大陆斜坡带较多部位产生失稳现象,在那里会形成巨大的滑塌块体滑入深海,并使深海生态环境遭受灾难性后果(图8.20)。

图8.20 海洋天然气水合物环境和工程地质效应的综合示意图

根据先前对海底的探测的结果,科学家解释说,8千年前位于挪威大陆边缘总量大约5600m3的沉积物从人陆坡上缘向挪威海盆滑动了800km,巨量的泥土推开海水引起的海啸造成毁灭性的后果,可怕的浪涛突然间吞没了海岸线。科学家猜测,这个极为著名的Storrega海底山崩事件,大概是由于天然气水合物释放而形成的世界著名的最大滑体之一。

天然气水合物作为可能的封闭矿床的盖层有利于向上运移的烃类化合物的聚集,但是钻井时如若钻遇在天然气水合物近旁形成的这种气体储集库,有可能出现爆炸式的压力释放,也即所谓的“blow outs”。科学家认识到,天然气水合物的脆弱性对井位的选择、钻探和下套管的方案具有重要的影响,天然气水合物处于失稳状态当然也会对海底的管道、电缆等工程设施及施工造成威胁,甚至造成可怕的后果。

南海北部陆坡发现大量天然气水合物存在的地质、地球物理和地球化学标志。其中特征清晰典型、多证据并存的水合物赋存区与海底滑坡的分布范围相吻合,说明水合物与海底滑坡之间有着极其密切的关系。

南海北部陆坡发育的海底滑坡,以松散结构的高含量粉粒为特征,具有较高的含水率、孔隙比和有机碳以及高含量的烃类气体,为天然气水合物的形成提供了丰富的物质来源和储集空间,水合物的形成又可固结滑塌堆积的松散沉积物;然而,天然气水合物的分解又可造成新的海底滑坡。

根据天然气水合物稳定的温压条件,它至少在始新世末就已存在,当时海洋冷水圈(水温<10℃)已形成。在这以前,晚白垩世及古新世的底层海水温度估计为7-10℃,在较深水部位也可能形成较薄的天然产水合物层。在适宜的条件下形成的天然气水合物充填于沉积层物的空隙中,起到阻碍沉积物固结和矿物胶结的作用。当压力降低或温度升高时,天然气水合物稳定深度降低,水合物层的底部变得不稳定,释放出远大于水合物体积的甲烷,形成一个充气层,降低了沉积物的强度,导致大范围的滑坡。在渐新世以前不存在大的冰盖,在出现较长时间的低水面时天然气水合物的不稳定化可能成为海底滑坡及浅层构造变动的一级动因。在早始新世末(49.5Ma)及渐新世中期(30Ma)有两次海平面下降事件,都伴随有人型滑坡。新泽西州陆缘的地震剖面的分析表明在早第三纪发生了四次大滑塌,都对应于主要低水面期。更新世冰期时海平而下降约100m,陆架和陆坡的静水压力降低约1000kPa,使天然气水合物的稳定深度下降约20m。这可能是当时在世界范围内发生普遍陆缘滑坡的原因。天然气水合物与海底滑坡的可能联系在世界各地都有报道,重新研究陆缘的地震剖面和地层数据,分析在天然气水合物稳定深度内的浅层构造现象,将可能找到更多地质历史中存在天然气水合物的证据。

水合物分解所带来的负面影响引起了有关专家的高度关注。Ogisako等认为,分析海底含水合物沉积的变形机制,应对海底表面变形机制以及含水合物层的变形机制分别加以研究。含水合物层中水合物分解,可以用掘进模型予以描述。Ogisako等进一步把日本南海海槽海底沉积物分成黏性土和砂质土两种类型,两种类型的土质具轴对称特征且符合黏弹性模型。在上述假设的基础上,Ogisako等利用有限元法对日本南海海槽含水合物沉积在水合物分解时的变形机制进行了研究。

日本的另一位地质学家Masayuki等也对含水合物沉积物十力学特征进行了研究,他的实验方法是通过设计一个排水系统,然后在该系统中放入实验室合成的水合物和砂,然后观测水合物分解时含水合物沉积的变形机制。该排水系统采用了二维压力技术,从而使得该排水系统能够模拟深水环境下的压力体系,此外,Masayuki等设计的排水系统还能够控制水注入和排出的速度。

海底水合物的分解,除导致海底稳定性降低,并出现海底滑坡之外,还会导致海啸的发生。以美国为例,其东海岸、墨西哥湾、西海岸、阿拉斯加和夏威夷等地的海啸在幅度和频度方面都有所增强。一些研究表明:海啸所产生的危害,要比人们想象的还要严重许多。针对目前存在的问题,美国方面已经开展了海啸的调查和研究,以进一步搞清海啸发生的频度、幅度、潜在危害评估、形成机制以及和水合物分解之间的关系等。

在对现代地质环境和灾害进行研究的基础上,地球科学工作者对地质历史时期的环境及灾害事件又重新开始关注。古生物学家针对地质历史时期几次大的生物灭绝现象提出了各种各样的假说。如泥盆纪晚期动物的灭绝现象,广泛分布的黑色页岩使众多的地质学家相信是全球性的缺氧事件导致了该次生物的人灭绝。最新的碳同位素测试数据显示:伊朗和中国南部一些地区标准剖面上δ13C分别降低了-5‰和-1.5‰。碳同位素异常与全球碳循环的扰动有关,与此相对应的是氧同位素的测试结果也显示了类似的异常。上述现象说明了一个全球性的变暖事件。由于气体水合物中甲烷的释放,导致全球变暖,从而最终导致了生物的灭绝。

北部墨西哥湾的布什山水合物渗流站位上有天然气水合物的地面露头。最新设计的流体通量测量仪/化学取样器叫做MOSQUITO,被部署在布什山已经有430天,确定地下动力流通量如何影响天然气水合物稳定性,并量化相关的入海甲烷的通量。其中3台流体通量测量仪被放置在临近天然气水合物丘堤的一个露头处,而第4台用以监测背景条件。通量测量仪测量结果揭示了丘堤附近地面下水文学特征复杂而多变,伴随着-161~273cm/yr范围内的下降流到上升流的频繁活动,以及通量水平组分的暂时性变化。通量的连续化学记录表明了沉积物中天然气水合物活跃地形成。Solomon等提出,临近天然气喷出口(达4个月)的海水下降流的长周期由分压力驱动。流速的高频率变化(日-周)有可能源自沉积物渗透性和三维流体通量场的短暂变化,这是活跃天然气水合物和自生碳酸盐析出的结果,也是游离气出现的结果。天然气水合物形成归因于聚焦天然气喷出口长期的甲烷气析出,然后是更为弥散的晶间甲烷通量。从聚焦天然气喷出口横跨布什山冷泉的甲烷通量,其估算值为5×106mol/yr。这种显著的通量证实布什山和相似的西北墨西哥湾烃类渗流可能是重要的进入海洋抑或大气中的甲烷的自然来源。

“甲烷喷发假说”假设天然气水合物和海底渗流是控制第四纪大气和气候变化的主要地质因素。然而,甲烷地质来源存在着更广泛的类别,在过去气候变化中发挥重要作用。除了近海渗流,相关的甲烷地质散发(GEM)还来自陆上渗流,包括泥火山活动、微渗流和地热通量,全部的GEM是现在大气中甲烷的第二重要自然来源。陆上GEM进入大气的甲烷量似乎要胜过海上的渗流。陆上来源向大气中输送同位素值显著较重(富13C)的甲烷,主要受内生地质作用(地球动力学)的控制,导致地质年代尺度和千年尺度上人规模的气流变化,只有小部分是受控于外生(地表)地质作用,所以不为消极反馈所影响。大气中甲烷富集的最终影响不是如同“气水化合物爆发假说”所言,必然地需要灾变或者突发的释放。从米源的增强排气过程已经对冰心记录中观测到的甲烷趋势有所贡献,能够解释最近的观测中发现的晚第四纪甲烷浓度增加的峰值,以及伴随的重同位素甲烷的富集。这个假说应当经历基于大气、生物和地质指标的各种多学科交叉研究的证实。

天然气是化合物

可燃冰是一种天然气水合物其中的主要化学成分水和甲烷,化学式为CH·nHO。

可燃冰是天然气与水在高压低温条件下形成的类冰状结晶物质,因其外观像冰,遇火即燃,因此被称为“可燃冰”、“固体瓦斯”和“汽冰”,化学式为CH4·nH2O。天然气水合物常见于深海沉积物或陆上永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。

由于分布浅、分布广泛、总量巨大、能量密度高,而成为未来主要替代能源,受到世界各国政府和科学界的密切关注。

可燃冰的产量:

据粗略估算,在地壳浅部,可燃冰储层中所含的有机碳总量,大约是全球石油、天然气和煤等化石燃料含碳量的两倍。有专家认为,水合甲烷这种新型能源一旦得到开采,将使人类的燃料使用史延长几个世纪。

随着研究和勘测调查的深入,世界海洋中发现的可燃冰逐渐增加,1993年海底发现57处,2001年增加到88处。据探查估算,美国东南海岸外的布莱克海岭,可燃冰资源量多达180亿吨,可满足美国105年的天然气消耗;日本海及其周围可燃冰资源可供日本使用100年以上。

据专家估计,全世界石油总储量在2700亿吨到6500亿吨之间。按照目前的消耗速度,再有50-60年,全世界的石油资源将消耗殆尽。可燃冰的发现,让陷入能源危机的人类看到新希望。

天然气水合物是液体还是固体,还是气体?

问题一:天然气水化合物发现的主要意义是什么可燃冰是指水和天然气相结合后形成的一种晶体物质,学术上称为“天然气水化合物”。

天然气水合物的形成有三个基本条件,缺一不可。据专家介绍,首先温度不能太高;第二压力要足够大,但不需太大;0℃时,30个大气压以上就可生成;第三,地底要有气源。天然气水合物受其特殊的性质和形成时所需条件的限制,只分布于特定的地理位置和地质构造单元内。一般来说,除在高纬度地区出现的与永久冻土带相关的天然气水合物之外,在海底发现的天然气水合物通常存在水深300~500m以下(由温度决定),主要附存于陆坡、岛屿和盆地的表层沉积物或沉积岩中,也可以散布于洋底以颗粒状出现。这些地点的压力和温度条件使天然气水合物的结构保持稳定。从大地构造角度来讲,天然气水合物主要分布在聚合大陆边缘大陆坡、被动大陆边缘大陆坡、海山、内陆海及边缘海深水盆地和海底扩张盆地等构造单元内。据估计,陆地上20.7%和大洋底90%的地区,具有形成天然气水合物的有利条件。绝大部分的天然气水合物分布在海洋里,其资源量是陆地上的100倍以上。在标准状况下,一单位体积的天然气水合物分解最多可产生164单位体积的甲烷气体,因而是一种重要的潜在未来资源。

天然气水合物在世界范围内广泛存在,这一点已得到广大研究者的公认。在地球上大约有27%的陆地是可以形成天然气水合物的潜在地区,而在世界大洋水域中约有90%的面积也属这样的潜在区域。已发现的天然气水合物主要存在于北极地区的永久冻土区和世界范围内的海底、陆坡、陆基及海沟中。由于采用的标准不同,不同机构对全世界天然气水合物储量的估计值差别很大。据潜在气体联合会(PGC,1981)估计,永久冻土区天然气水合物资源量为1.4×1013~3.4×1016m3,包括海洋天然气水合物在内的资源总量为7.6×1018m3。但是,大多数人认为储存在汽水合物中的碳至少有1×1013t,约是当前已探明的所有化石燃料(包括煤、石油和天然气)中碳含量总和的2倍。由于天然气水合物的非渗透性,常常可以作为其下层游离天然气的封盖层。因而,加上汽水合物下层的游离气体量这种估计还可能会大些。如果能证明这些预计属实的话,天然气水合物将成为一种未来丰富的重要能源。

从化学结构来看,天然气水合物是这样构成的:由水分子搭成像笼子一样的多面体格架,以甲烷为主的气体分子被包含在笼子格架中。不同的温压条件,具有不同的多面体格架。

从物理性质来看,天然气水合物的密度接近并稍低于冰的密度,剪切系数、电解常数和热传导率均低于冰。天然气水合物的声波传播速度明显高于含气沉积物和饱和水沉积物,中子孔隙度低于饱和水沉积物,这些差别是物探方法识别天然气水合物的理论基础。此外,天然气水合物的毛细管孔隙压力较高。

有专家预测,可燃冰至少能为人类提供1000年的能源,它将来有望替代煤、石油和天然气,成为“21世纪的新能源”。

可燃冰是天然气和水结合在一起的固体化合物,外形与冰相似。由于含有大量甲烷等可燃气体,因此极易燃烧,而且燃烧后污染较少。科学家把可燃冰称作“属于未来的能源”。世界上可燃冰的总资源量巨大。据估算,其有机碳含量大约相当于全世界已知煤炭、石油和天然气总量的2倍。这些可燃冰资源可满足人类未来1000年的需求。世界上已发现的可燃冰分布区多达116处,其矿层之厚、规模之大,是常规天然气田无法相比的。

天然可燃冰呈固态,不会像石油开采那样自喷流出。为了获取这种清洁能源,世界许多国家都在研究天然可燃冰的开采方法。科学家们认为,一旦开采技术获得突破性进展,那么可燃冰立刻会成为21世纪的主要能源......>>

问题二:初中化学,天然气是混合物还是纯净物,为什么有些资料说是混合物,有些又说它是纯净的化合物?谢谢作天然气的主要成分是CH4,CH4是化合物,凡是能写出化学式的都算是化合物和单质,但是天然气只能说主要成分是CH4,所以天然气是混合物

问题三:天然气的组成是什么?天然气(natural gas)又称油田气、石油气、石油伴生气。开采石油时,只有气体称为天然气;石油和石油气,这个石油气称为油田气或称石油伴生气。天然气的化学组成及其理化特性因地而异,主要成分是甲烷,还含有少量乙烷、丁烷、戊烷、二氧化碳、一氧化碳、硫化氢等。无硫化氢时为无色无臭易燃易爆气体,密度多在0.6~0.8g/cm3,比空气轻。通常将含甲烷高于90%的称为干气,含甲烷低于90%的称为湿气。天然气系古生物遗骸长期沉积地下,经慢慢转化及变质裂解而产生之气态碳氢化合物,具可燃性,多在油田开采原油时伴随而出。

天然气不是做出来的,天然气系古生物遗骸长期沉积地下,经慢慢转化及变质裂解而产生之气态碳氢化合物,具可燃性,多在油田开采原油时伴随而出。

问题四:天然气是由什么组成的天然气系古生物遗骸长期沉积地下,经慢慢转化及变质裂解而产生之气态碳氢化合物,具可燃性,多在油田开采原油时伴随而出。

天然气蕴藏在地下约3000― 4000米之多孔隙岩层中,主要成分为甲烷,比重0.65,比空气轻,具有无色、无味、无毒之特性, 天然气公司皆遵照 *** 规定添加臭剂,以资用户嗅辨。

依天然气蕴藏状态,又分为构造性天然气、水溶性天然气、煤矿天然气等三种。而构造性天然气又可分为伴随原油出产的湿性天然气、与不含液体成份的干性天然气。

天然气主要有以下几个用途:

天然气发电,具有缓解能源紧缺、降低燃煤发电比例,减少环境污染的有效途径,且从经济效益看,天然气发电的单位装机容量所需投资少,建设工期短,上网电价较低,具有较强的竞争力。

天然气化工工业,天然气是制造氮肥的最佳原料,具有投资少、成本低、污染少等特点。天然气占氮肥生产原料的比重,世界平均为80%左右。

城市燃气事业,特别是居民生活用燃料。随着人民生活水平的提高及环保意识的增强,大部分城市对天然气的需求明显增加。天然气作为民用燃料的经济效益也大于工业燃料。

压缩天然气汽车,以天然气代替汽车用油,具有价格低、污染少、安全等优点。

目前人们的环保意识提高,世界需求干净能源的呼声高涨,各国 *** 也透过立法程序来传达这种趋势,天然气曾被视为最干净的能源之一,再加上1990年中东的波湾危机,加深美国及主要石油消耗国家研发替代能源的决心,因此,在还未发明真正的替代能源前,天然气需求量自然会增加。

问题五:天然气中怎么会产生水化物?天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”。在一定条件(合适的温度、压力、气体饱和度、水的盐度、pH值等)下由水和天然气组成的类冰的、非化学计量的、笼形结晶化合物。

天然气水合物结构

天然气水合物是一种白色固体物质,外形像冰,有极强的燃烧力,可作为上等能源。它主要由水分子和烃类气体分子(主要是甲烷)组成,所以也称它为甲烷水合物。天然气水合物是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下,由气体或挥发性液体与水相互作用过程中形成的白色固态结晶物质。 一旦温度升高或压强降低,甲烷气则会逸出,固体水合物便趋于崩解。(1立方米的可燃冰可在常温常压下释放164立方米的天然气及0.8立方米的淡水)所以固体状的天然气水合物往往分布于水深大于 300 米 以上的海底沉积物或寒冷的永久冻土中。海底天然气水合物依赖巨厚水层的压力来维持其固体状态,其分布可以从海底到海底之下 1000 米 的范围以内,再往深处则由于地温升高其固体状态遭到破坏而难以存在。

从物理性质来看,天然气水合物的密度接近并稍低于冰的密度,剪切系数、电解常数和热传导率均低于冰。天然气水合物的声波传播速度明显高于含气沉积物和饱和水沉积物,中子孔隙度低于饱和水沉积物,这些差别是物探方法识别天然气水合物的理论基础。此外,天然气水合物的毛细管孔隙压力较高。

天然气水合物系统要素

(1)天然气水合物结构

天然气水合物是由氢键笼立体叠置形成的晶体化合物(图8.2)。天然气水合物是笼状物,意味着主体的水分子有可容客体气体分子进入的架构空间。空的笼形架构是不稳定的,需要捕获气体分子以保持笼形晶体的稳定性。水合物紧凑的结构可使天然气高效叠置。标准温压条件下(1kPa,20℃),1体积的天然气水合物可膨胀150~180倍。

图8.2 天然气水合物晶体结构

水合物可形成0.48~0.90nm大小的天然气分子赋存空间。存在3种不同的结构类型,一般地,结构的形成取决于最大客体分子的大小。甲烷和乙烷可单独形成sI水合物;丙烷和异丁烷可形成sⅡ水合物,它可单独或与乙烷和甲烷结合存在;仅当甲烷存在的情况下,正丁烷和新戊烷可形成sⅡ水合物,也可与较大的烃分子(C5-C9)形成结构H(sH)水合物。

(2)物理性质和特征

天然气水合物通常呈白色,外形如冰雪状。结晶体以紧凑的格子构架排列,与冰的结构相似(图8.2)。在这种冰状结晶体中,碳氢气体充填在水分子结晶格架的空穴中,两者在低温和一定压力下,通过范德华作用力稳定地相互结合在一起。在自然界中,甲烷是最常见的客气体分子(Sloan,1990)。

但天然气水合物也并非全部呈白色,可以有多种其他色彩。如从墨西哥湾海底获取的天然气水合物呈**、橙色、红色等,从大西洋海底布莱克-巴哈马高原取得的天然气水合物呈色。天然气水合物为什么会产生出这么多种颜色,至今还没有达成共识,但人们普遍认为天然气水合物的其他一些物质,如油类-细菌和矿物等,都可能对这些色彩的产生起关键作用。

天然气水合物具有多孔性(图8.3),硬度和剪切模量小于冰,密度与冰密度大致传导率和电阻率远小于冰;天然气水合物的物理性质见表8.1和表8.2。

天然气水合物属于沉积矿产,主要发育于新生代,以上新世为主。沉积层构造可分状、透镜状一层状、斑状和角砾状(图8.4)。

图8.3 含天然气水合物的钻孔岩心

表8.1 天然气水合物的声学性质

表8.2 甲烷天然气水合物和冰的性质

图8.4 沉积物中天然气水合物(白色)

天然气水合物形成时,其液流渗透到沉积物颗粒间隙和裂隙中可形成块状和脉状构造,前者表现为沉积物被天然气水合物均匀胶结,后者是天然气水合物呈网状、细脉状充填于沉积物或沉积岩的裂隙中。从围岩分离出来的含有气体的水溶液,沿沉积层层面发生迁移,其迁移前锋产生挥发作用,可形成透镜状—层状构造,在形态上表现为天然气水合物呈薄层或透镜体出现于沉积物或沉积岩基质中,相互之间大致平行排列并交替出现。

如沉积物基质中大致均匀分布有近圆形或等轴型的天然气水合物浸染体,称之为斑状构造。这种天然气水合物常与透镜状—层状构造含天然气水合物的沉积物相伴出现;具角砾构造天然气水合物与构造破碎带有密切联系,显示这类天然气水合物曾遭到过构造破坏。

天然气水合物系统与常规油气系统既有相同之处亦有差异。天然气水合物系统与常规油气系统一样,都需要有提供烃类气体的源、储集烃类气体的储层以及相应的地质过程。相异之处在于,常规油气系统中的圈闭及盖层在天然气水合物系统中是以不同的形式表现的。天然气水合物的形成和保存需要一定的温压条件,即天然气水合物的稳定带,该概念在作用上对应于常规油气系统中的圈闭及盖层。另外,由于天然气水合物是由水分子与烃类分子或其他气体分子通过一定的作用力所形成的结晶物,故要形成天然气水合物必须有充足的水源,因此,水源亦是组成天然气水合物系统必不可少的一个要素。

(一)稳定性条件

1.天然气水合物稳定域的形成

天然气水合物形成于海底沉积物或永久冻土带中。研究表明,在世界90%的海洋中,在某一深度以下均有适宜天然气水合物存在的温压环境。只要沉积物中有充足的粒间孔隙为天然气水合物提供赋存空间,并且有充足的甲烷和水即可能有天然气水合物生成。年轻的、欠压实的海洋碎屑沉积层内一般都具有充足的孔隙和大量的孔隙水,当源于沉积物自身的生物成因的浅成气和热成因的深成气在向上迁移过程中进入该温压场中并充满沉积物的孔隙,就可以形成天然气水合物稳定域(HSZ)(图7-15)。HSZ中发育的天然气水合物充填在沉积层孔隙中,形成了一个渗透率较低的盖层,其下捕获了大量的游离气。HSZ的基底(BHSZ)代表了游离气-天然气水合物和游离气-水之间的准稳定相边界,它主要受压力和温度的控制,同时也受到地球化学条件等因素的影响。

地震剖面上的似海底反射层(BSR)深度与天然气水合物稳定带的理论底界一致。所以,BSR是识别天然气水合物最有意义的标志之一,它暗示着天然气水合物稳定带底界(BHSZ)的存在。世界各地获取的天然气水合物样品和周围沉积物的研究分析表明:

①含天然气水合物的沉积物大多为新生代(从始新世到全新世)沉积,沉积速率一般较快,而且富含有机碳;②在天然气水合物稳定带之上往往分布有白云石等自生碳酸盐岩,而其下的沉积物中自生的菱铁矿则逐渐增多;③天然气水合物沉积层(HDZ)在地球物理方面表现为电阻率较高、地震传播速度较大、声波时差小和自然电位幅度低等特征;④天然气水合物沉积层在地球化学方面主要表现出氯异常现象,天然气水合物的存在使得沉积物的Cl-浓度降低,并伴随有扩δ18O异常(金庆焕等,2006)。

图7-15天然气水合物稳定域相图 (据Dickens et al.,1997)

天然气水合物形成温度与体系压力、气体组分和水的活度密切相关:

①体系压力越高,天然气水合物形成温度越高;②气体组分不同,形成天然气水合物的压力、温度不同。气体相对密度增大,一定压力下天然气水合物形成温度升高,或者一定温度下天然气水合物形成压力降低。当气体中含有CO2和H2S等易容于水的酸性气体时,天然气水合物形成温度升高或形成压力降低;③水溶液的电解质含量越高,一定压力下天然气水合物形成温度越低。

通过实验数据获得的天然气水合物稳定性的平衡温压曲线的对比可以求出天然气水合物稳定带的厚度和埋深。图7-16为从陆上冻土带得出的一系列深度-温度图解及由实验数据获得不同天然气水合物相平衡曲线图。从图7-16中可看出温度、孔隙压力及气体组成的变化对天然气水合物稳定带厚度的影响。在每一个相态图中,假定年平均地表温度是-10℃,0℃为等温线然而,深度-温度图解中永久冻土带基底深度分别为305m、610m和914m,冻土带深度-温度剖面中存在3种不同的地温梯度4.0℃/100m、3.2℃/100m及2.0℃/100m。两条天然气水合物相平衡曲线代表天然气水合物不同的气体化学性质。其中一条稳定曲线中为100%的纯甲烷水合物,另外一条中天然气水合物组成为98%的甲烷、1.5%的乙烷及0.5%的丙烷。

3种相态图中唯一不同的是孔隙压力梯度。假定每一个相态图中对应的孔隙压力梯度分别为:9.048kPa/m(图7-16A),9.795kPa/m(图7-16B),11.311kPa/m(图7-16C)。图7-16中显示了不同永冻层深度、地热梯度、气体组分和孔隙压力梯度条件下最适合天然气水合物形成的深度和温度条件。

图7-16天然气水合物相图 (据Collett et al.,2009)

可能的天然气水合物稳定带位于相态图中地温梯度曲线和天然气水合物相平衡曲线交会点处。例如,在图7-16B中,假定地下孔隙水压力梯度为静水压力梯度,从深度-温度图解中可知,610m深的冻土带基底在200m处与纯天然气水合物曲线相交,该处即为天然气水合物稳定带的上边界。地温梯度为4.0℃/100m的冻土带基底与纯甲烷水合物相平衡温压曲线在1100m处相交。因此,该可能的天然气水合物稳定域大约为900m厚。然而,如果冻土带深度达到914m,且冻土带下的地温梯度为2.0℃/100m时,天然气水合物稳定带大约2100m厚。

大部分对天然气水合物稳定性的研究都假定地下孔隙水压力梯度等于静水压力梯度。孔隙水压力梯度超过静水压力梯度时将会形成超压,并使天然气水合物稳定带厚度增加。当孔隙水压力梯度小于静水压力梯度时,将会使天然气水合物稳定带厚度变薄。孔隙压力变化对天然气水合物稳定带厚度的影响可通过图7-16中天然气水合物相图解的对比中进行量化。例如,在图7-16A中,假定地下孔隙水压力梯度为9.048kPa/m,地温梯度为2.0℃/100m,永久冻土带610m处的100%纯天然气水合物稳定带厚度为1600m。然而,当孔隙压力梯度为11.311kPa/m时,天然气水合物稳定带的厚度将约为1850m。图7-16中的天然气水合物相平衡温压曲线由Holder et al.(1987)根据实验数据获得。当纯甲烷水合物系统中混入1.5%甲烷,0.5%乙烷后,相平衡曲线发生向右移动,因此使得可能稳定带厚度增大。例如,假设孔隙水压力梯度为静水压力梯度,永久冻土带深度为610m,地温梯度为4.0℃/100m,天然气水合物稳定带厚度将达到900m,然而,当混入1.5%的乙烷和0.5%丙烷时,将使可能的稳定带厚度达到1100m。

众所周知,溶解盐类会降低水的冰点。例如,阿拉斯加北坡冻土带基底不在0℃等温线上,而在其之下,冰点降低是由于未结冰的孔隙水中盐分的存在。当把盐如氯化钠加入天然气水合物体系时,它会降低天然气水合物形成的温度。在天然气水合物形成过程中,孔隙水中的盐分和气体相互作用时会使晶体形成的温度每一千分之一盐分降低0.06℃(Holder et al.,1987)。因此,孔隙水的含盐度和海水盐度相同(含盐量为32‰)将会使图7-16中天然气水合物相平衡温压曲线向左移动2℃左右,并且使天然气水合物稳定带变薄。

2.天然气水合物稳定带与天然气水合物沉积层及游离气顶界间的关系

一般人们都认为天然气水合物稳定带的底界就是游离气的顶界,即地震剖面上BSR所处的位置,但事实并非完全如此。如果天然气水合物稳定带下方甲烷的供给速率超过某一临界值(这取决于流体速率、能量流等因素),那么天然气水合物沉积层的底界就可达到游离气的顶部,HSZ底界与HDZ底界及游离气顶界确实是一致的。但是在某些情况下,游离气带的顶界与HSZ的底界并不一致,其间可能存在一层既无天然气水合物也无游离气的沉积层。ODPl64航次的995站和997站位地震剖面上显示有很强的BSR,这里的游离气带的顶界与HSZ的底界是一致的,而994站位处无BSR显示,但钻探结果表明该处也蕴藏丰富的天然气水合物。进一步分析表明这里的游离气顶界深于天然气水合物沉积层底界,这主要是由于甲烷的供给速率低于某一临界值导致的。图7-17的相平衡建立在下述假设基础上:海底温度为3℃,水深为2800m,沉积物孔隙度为0.5,物质流速率为0.3mm/a,能量流为40mW/m3,渗透率为10×10-3~14×10-3μm2。通过粗略地计算,994站位的甲烷供给速率为52.5mol/(m2·ka),其游离气顶界位于海底之下550m处,而天然气水合物稳定带的底界位于海底之下453m处,其中天然气水合物主要分布于海底之下124~389m;而在995站位和997站位,甲烷供给速率超过61mol/(m2·ka),天然气水合物稳定带底界、天然气水合物沉积带底界和游离气顶基本一致,位于海底之下453m左右。由此可见,如果甲烷的含量和流体的运移速率小于某一临界值,则含水合物沉积层的厚度要小于天然气水合物稳定带的厚度(图7-17中994站位),其底部游离气要么缺失,要么远远位于天然气水合物稳定带底界之下;如果甲烷的含量和流体的运移速率等于某一临界值,则HDZ的底界与HSZ的底界一致,游离气则刚好分布于天然气水合物稳定带之下;如果甲烷的含量和流体的运移速率大于某一临界值,则HDZ的底界与HSZ的底界一致,并且大量的游离气分布于天然气水合物稳定带之下。与天然气水合物稳定带底界类似,天然气水合物稳定带的顶界从理论上说可以到海底,但只有当底层水中含大量的甲烷且有高的甲烷和流体运移速率时,天然气水合物才能在海底保持稳定(金庆焕等,2006)。

图7-17天然气水合物稳定带、天然气水合物沉积层与游离气顶界之间的关系图 (据Wood et al.,2000)

3.天然气水合物稳定带的变化

在高压和低温的环境下,在诸如大陆坡附近的沉积物中,天然气水合物相对稳定,当甲烷供应充分时,天然气水合物将出现于整个天然气水合物稳定带中。天然气水合物稳定带也不是静止不动的,随着沉积作用、深部热流的作用以及各种地质作用的进行,由于海底压力和温度的变动会影响到下伏的天然气水合物系统(如造成天然气水合物的形成或崩解),从而使天然气水合物稳定带发生变化。这主要是由于各种地质作用造成海底温度和压力变化,使天然气水合物稳定带的相边界的稳定条件遭到破坏,HSZ底界附近的天然气水合物变得不稳定,开始崩解,并释放出气体,天然气水合物稳定带底界向上移动。天然气水合物分解释放出的甲烷气体可能会在合适的温压场中再次固化,形成新的天然气水合物层,正因为天然气水合物具有重新活化的特征,所以天然气水合物一旦形成,就不会随沉积物的堆积而被埋藏。Xu和Ruppel(1999)曾采用一维模式来研究海底天然气水合物系统的稳定性,他们假定有稳定的流体、甲烷、热通量从下部向上运移,在海底温度、压力和甲烷浓度固定不变的情况下,通过压力、温度和甲烷浓度联合方程,来研究海底压力和温度的变化对天然气水合物稳定带的影响。结果表明海底压力和温度的变动可影响天然气水合物稳定带的范围,温度的变动改变了甲烷的溶解度,如海底温度降低4℃使甲烷溶解度变化了几十个百分点,从而使天然气水合物稳定带的底界(BHSZ)和天然气水合物沉积带的底界(BHDZ)下移变深,同时使天然气水合物沉积带的顶界(THDZ)上移变浅;而海底压力对溶解度的影响可忽略不计,所以压力变动不会对BHDZ产生很大影响,但对BHSZ却影响显著。自然界中许多地质作用可影响到海底温度和压力的变化,如:

①因全球变暖或变冷事件使极地或冰川冰融化或凝结可以改变地球上海水的体积,从而造成海底压力的变动,同时全球变暖或变冷也可导致海底温度的变化;②构造上升作用可使水深减少,压力降低;③沉积作用的进行使埋藏深度增加,若保持地温梯度的恒定就可导致温度上升;④地温梯度的变化也可引起温度的升降;⑤海水温度的变化也可影响天然气水合物系统的稳定性等。

(二)气源

形成天然气水合物的烃类气体是控制天然气水合物形成和分布的重要因素。其气源通常可分为两大类,即热解成因和微生物成因。其中,生物成因的烃类气体组成较简单,分子结构较小,通常构成Ⅰ型结构的天然气水合物;而热解成因的烃类气体分子结构相对较大,不但可以形成Ⅰ型结构的天然气水合物,还可以形成Ⅱ型和H型的天然气水合物。

微生物成因气主要由微生物分解有机质形成。其生成途径主要有两条:二氧化碳还原反应(CO2+4H2→CH4+2H2O)和醋酸根发酵作用(CH3COOH+4H2→CH4+CO2)。虽然在某种现今的环境中通过发酵作用也可形成天然气,但CO2还原作用是古微生物气体聚集的一个重要过程。微生物成因气多数由二氧化碳还原反应生成,其二氧化碳通常由原地有机质氧化和分解形成,之后经微生物还原作用生成甲烷。因此由微生物成因气形成的天然气水合物中的气体大多数来源于水合物附近的沉积物。

热成因甲烷是由干酪根在温度超过120℃时经热解作用形成的,在热成熟作用早期,除了生成热成因甲烷外,还生成其他烃类和非烃气体,并常常伴随原油的生成。在生油高峰期,甲烷主要通过干酪根、沥青和原油的C-C键断裂形成。随着温度的增高,当进入生油窗时,油气开始大量生成。对甲烷而言,其最佳生成温度为150℃。根据典型的地温梯度推算,干酪根埋藏深度应该大于1km,而水合物在海底至海底以下500m左右存在。因此,由热成因甲烷形成的天然气水合物的气体均应来源于深部,后随断层、泥火山等有利构造向上经过长距离运移,到达海底或海底附近后形成天然气水合物,如里海与泥火山有关的天然气水合物。

Kvenvolden(1995)统计了世界各地的天然气水合物样品(表7-4),结果表明,不同成因的甲烷气具有完全不同的碳同位素组成。细菌还原成因的甲烷气的δ13C值十分低,一般为-57‰~-94‰,而热分解成因的甲烷气的δ13C值较高,一般为-29‰~-57‰。

表7-4世界各地天然气水合物中CH4的含量和δ13C值表

(据Kvenvolden et al.,1995)

Matsumoto et al.(2000)曾利用甲烷的δ13C值和气体成分比值R(C1/C2+C3)来判别不同成因的天然气水合物(图7-18)。热分解成因的甲烷气具有高的δ13C值(大于-50‰)和低的R值(小于100),而细菌还原成因的甲烷气具有低的δ13C值(小于-60‰)和高的R值(大于1000,达1万以上),介于两者之间表明为混合成因。

图7-18由CH4的δ13C值和烃类气体组成判别气体成因 (据金庆焕等修改自Matsumoto et al.,2000)

天然气水合物烃类气体成分和甲烷气的δ13C值组成表明,它们主要是由微生物还原沉积有机质的二氧化碳而产生的甲烷气,其含量占烃类气体总量的99%以上,其δ13C值组成范围在-57‰~-73‰。仅在墨西哥湾和里海(Ginsburg et al.,1992)两处发现了主要由热成因甲烷形成的天然气水合物,其烃类气体中甲烷含量为21%~97%,甲烷气的δ13C值为-29‰~-57‰。少数地区天然气水合物中的甲烷为混合成因,以微生物成因为主(金庆焕等,2006)。

(三)水源

水是形成天然气水合物一个不可或缺的因素。天然气水合物中绝大多数都是水,Ⅰ型天然气水合物中气水比是8∶46,Ⅱ型天然气水合物中气水比是24∶136,气水比说明了天然气水合物中含有大量的水。水的来源有两类:一是水和天然气一起被运移并从过滤流中沉淀;二是从沉积物中原地萃取,随着甲烷的不断供给和共生天然气水合物的形成,使得纯水从周围的沉积物中渗透扩散到反应带内。

通常,水普遍存在于海洋和陆上沉积物中,但在某种情况下,天然气水合物形成过程中水分被排出。在溢气口观察到的气泡和在大多数深水环境中观察到的类似特征证实了天然气在厚层天然气稳定带内发生某种程度上地运移。这一过程可用一种地质运移模式来解释,其允许天然气通过天然气水合物稳定域发生运移,包括气泡相气体沿着裂缝发生运移,在这一裂缝性运移通道中,其隔层壁上吸附着天然气水合物,气泡相气体沿着内部通道发生运移。其中,天然气水合物充填的裂缝从不与地层水发生接触。在这一系统中,水分的排出阻止了天然气水合物的形成。阿拉斯加北部可能的甲烷水合物稳定带中发现的充满游离气的砂岩储集层就是一个明显的例子。在这种情况下,夹在厚层页岩中的分散砂岩体可能含有游离气。然而,由于缺乏有效水分,天然气水合物在该分散砂岩储集层中难以形成。

(四)天然气运移

天然气运移是天然气水合物系统中的一个重要组成部分。

如前所述,高度富集的天然气水合物中蕴藏大量的天然气,这些气体来源于微生物成因或热成因。在大多数情况下,天然气水合物中的气体是微生物成因的。另外,大多数天然气水合物通常发现于埋藏较浅或温度较低而不足以形成热成因气的沉积物中。因此,存在于大多数天然气水合物中的天然气必须在稳定带中通过一系列化学过程才能聚集。

甲烷和其他气体在沉积物中运移过程中主要有以下3种相态:

①扩散相;②气溶水相;③气泡相或游离气相。通过扩散相进行运移过程较缓慢,且通常很难形成天然气水合物。然而,通过气溶水相或游离相进行运移过程是有效的。

关于天然气运移和天然气水合物的形成之间的关系主要有两种基本模式。最早是由Davis和Hyndman于1990年提出的,水在天然气水合物稳定带中发生垂向运移,并且在向上运移过程中,甲烷溶解度逐渐降低,这将导致天然气水合物的形成。大量实地调查和实验研究发现,当烃类气体浓度大于其在孔隙水中的溶解度时,天然气水合物仅形成于孔隙水中甲烷达到饱和的沉积物中。另一种模式是,甲烷以气泡相向上运移至天然气水合物稳定带中,天然气水合物成核作用则发生在气泡和孔隙水的接触面处。两种模式都要求有允许水和气体运移的渗透性运移通道,但与含水运移模式相比,气相运移模式要求相对较好的流体运移通道。沉积物中孔隙水和气泡相气体运移过程通常被认为是沿着渗透性运移通道如断裂系统或多孔渗透性沉积层发生运移。因此,如果没有有效运移通道,很难形成大量天然气水合物。

(五)储集层

Sloan和Koh(2008)对已发现的天然气水合物样品进行分析研究发现原地天然气水合物的物理性质变化较大。天然气水合物的存在形式有4种:

①占据粗粒岩石粒间孔隙;②以球粒状散布于细粒岩石中;③以固体形式充填在裂缝中;④大块固态水合物伴随少量沉积物。然而,大多数天然气水合物实地考察发现天然气水合物聚集成藏主要受裂缝和粗粒沉积物的控制,天然气水合物主要充填在裂缝中或分散在砂岩储集层孔隙中。Torres et al.(2008)研究发现天然气水合物易形成于粗粒沉积物中,因为粗粒沉积物中毛细管压力较低,允许气体发生运移和水合物晶核的形成。然而,形成于富含泥质沉积物中的天然气水合物难以解释且非常少见。近年来,Cook和Goldberg(2008)提出,随着富含泥质沉积物孔隙水中天然气达到饱和,形成于多孔状裂缝中的天然气水合物沿着最大主应力发生扩散,在大多数情况下,沿着垂直裂缝发生运移。

Boswell和Collett(2006)提出,地质环境中存在4种类型的天然气水合物储集层(图7-19)。该资源金字塔通常用来说明资源量的相对大小和不同类型能源的生产率。在资源金字塔中,最具开采价值的是位于最顶端的储集层,最具技术挑战的是位于最底端的储集层。到目前为止,主要在以下4种不同类型的储集层中发现了天然气水合物:

①砂岩储集层;②裂缝性泥岩储集层;③紧邻海底的细粒泥质沉积物层;④非渗透泥岩层。Milkov和Sassen(2002)也对类似的天然气水合物矿床进行过描述。前两种类型的目的层被认为是有利的勘探目标,因为这两种目的层具有形成天然气水合物的有效渗透率。这两种类型的关系密切且通常以相结合的形式出现。这些储集层由水平-近水平的粗粒渗透性沉积层组成,以垂直-近垂直的裂缝作为运移通道。

图7-19天然气水合物资源金字塔 (据Collett,2008)

图7-19中天然气水合物金字塔最上层代表北极地区砂岩储集层中的天然气水合物高度聚集。Collett et al.(1995)指出北极地区阿拉斯加北坡砂岩储集层水合物资源量约为16.7×1012m3,近年来,Collett et al.(1995)对阿拉斯加北部的天然气水合物资源量进行评估后,指出目前可从阿拉斯加北部砂岩储集层中采集出大约2.42×1012m3的天然气水合物。类似的情况在北极其他冻土带未发现。其次海洋环境的砂岩储集层中中到高度富集天然气水合物资源。由于深海地质环境特征相差较大,浅层地层中的砂体含量通常较少。这些储集层勘探和开发成本通常较高。然而,大多数海洋天然气水合物将可能在深部构造层内发现,如墨西哥湾。MMS(Frye,2008)对墨西哥湾砂岩储集层中的高度富集的天然气水合物评估后,认为其资源量为190×1012m3。而且,MMS对墨西哥湾的评估后发现天然气水合物稳定带浅层沉积层中的具有储层性质的砂岩体比以前认为的还要多。

经生产测试与建模发现砂岩储集层中的天然气水合物可利用现有的生产技术进行开采。对北极和海洋地区砂岩储集层中的天然气水合物开采来说,不存在较大的技术困难;问题主要在于天然气水合物开采的经济效益。在天然气水合物资源金字塔中,位于砂岩储集层下方的是以细粒泥岩和页岩为主的储集层。在这些类型的天然气水合物矿藏中,裂缝系统中的天然气水合物资源前景最大。然而,与颗粒支撑的高渗透性砂岩储集层不同,甲烷很难从泥岩封闭的裂缝中排出。

近年来,实地研究显示局部地区埋藏较深的高度聚集的裂缝性天然气水合物矿藏比以前更加常见。另外,大多数裂缝性天然气水合物矿藏与地表渗入相关天然气水合物沉积有关。

大多数散布在细粒泥质沉积物中的海底天然气水合物矿藏与地表渗入天然气水合物沉积物有关。这种类型的天然气水合物矿藏通常呈丘状堆积在海底,在大多数情况下与深部裂缝性天然气水合物系统有关,该裂缝通常可作为天然气水合物在稳定带中运移的通道。这些特征是似乎多变但都较常见。然而,这种类型的天然气水合物矿藏资源量却不清楚。由于经济和技术瓶颈及可能会造成海底生态系统的破坏,在丘形体中开采出商业性天然气不太可能。

位于天然气水合物资源金字塔最底端的是那些规模最小的分散状天然气水合物矿藏。典型代表就是布莱克脊区,其大部分区域天然气水合物饱和度较低。世界上大多数天然气水合物可能属于这一资源当量。然而,以目前的技术还难以从该地区高度分散的资源中开采出具有商业性的天然气水合物。由于常规生产技术只适用于砂岩储集层中天然气水合物,砂岩储集层对开采天然气水合物来说被认为最具商业价值,并且可能是未来天然气水合物勘探和开发的主要对象。

(六)关键时刻

在常规油气系统中,地质事件的关键时刻对油气藏形成与分布来说是一个非常重要的控制因素。像大多数常规石油系统,在天然气水合物系统中,确定此属性取决于圈闭形成时间、天然气形成和聚集的大致时间。由于天然气水合物矿藏通常与天然气源密切相关以及天然气水合物能够独自形成圈闭,因此关键时刻并不是大多数天然气水合物矿藏的一个重要的控制因素。

天然气水合物环境及工程响应_天然气水合物