首页 > 数码科技 > 压敏电阻品牌有哪些?_压敏电阻符号

压敏电阻品牌有哪些?_压敏电阻符号

栏目:数码科技

作者:B姐

热度:0

时间:2024-02-29 09:56:25

压敏电阻品牌有:

国产品牌:深圳辰驹,华星、西无二、风华、鸿志、商盈等;

进口品牌:西门子,松下,EPCOS 、力特、TDK、兴勤、君耀、舜全、国巨。

世界知名品牌:ZOV TDK

“压敏电阻"是一种具有非线性伏安特性的电阻器件,主要用于在电路承受过压时进行电压嵌位,吸收多余的电流以保护敏感器件。

压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。它在电路中用文字符号“RV”或“R”表示。

电子元件名称符号及单位

电阻的概念、

一、基本概念

电阻:是某种材料所固有的,在一定程度上阻碍电流通过,并将所消耗的电能转化为热能的一种物理性质。

电阻器:在电路中起电阻性能的电子元件。

电阻值:衡量某种该材料物体电阻性能大小的一个物理量。

电阻单位:欧姆。

其他常用的有:太欧(TΩ),吉欧(GΩ), 兆欧(MΩ), 千欧(KΩ),毫欧(mΩ),纳欧(nΩ)皮欧(pΩ)的标识,其换算公式如下:

1TΩ=1000 GΩ; 1GΩ=1000 MΩ;1MΩ=1000;1KΩ=1000Ω;1Ω=1000mΩ;1 mΩ=1000nΩ; 1nΩ=1000pΩ;

电阻器的英文缩写:R,排阻(RN)

二、电阻分类

2.1.按阻值特性

2.1.1固定电阻器:

不能调节的,我们称之为定值电阻或固定电阻。

2.1.2可调电阻器:

阻值可以调节的,我们称之为可调电阻.常见的可调电阻是滑动变阻器,例如收音机音量调节的装置是个圆形的滑动变阻器,主要应用于电压分配的,我们称之为电位器。

2.2.按制造材料

2.2.1薄膜电阻

用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。主要如下:

a碳膜电阻器

碳膜电阻(碳薄膜电阻)为最早期也最普遍使用的电阻器,利用真空喷涂技术在瓷棒上面喷涂一层碳膜,再将碳膜外层加工切割成螺旋纹状,依照螺旋纹的多寡来定其电阻值,螺旋纹越多时表示电阻值越大。最后在外层涂上环氧树脂密封保护而成。其阻值误差虽然较金属皮膜电阻高,但由于价钱便宜。碳膜电阻器仍广泛应用在各类产品上,是目前电子,电器,设备,资讯产品之最基本零组件。

b 金属膜电阻器。

金属膜电阻(金属拍摄电阻)同样利用真空喷涂技术在瓷棒上面喷涂,只是将炭膜换成金属膜(如镍铬),并在金属膜车上螺旋纹做出不同阻值,并且于瓷棒两端度上贵金属。虽然它较碳膜电阻器贵,但低杂音,稳定,受温度影响小,精确度高成了它的优势。因此被广泛应用于高级音响器材,电脑,仪表,国防及太空设备等方面。

c 金属氧化膜电阻器

某些仪器或装置需要长期在高温的环境下操作,使用一般的电阻会未能保持其安定性。在这种情况下可使用金属氧化膜电阻(金属氧化物薄膜电阻器),它是利用高温燃烧技术于高热传导的瓷棒上面烧附一层金属氧化薄膜(用锡和锡的化合物喷制成溶液,经喷雾送入500~500℃的恒温炉,涂覆在旋转的陶瓷基体上而形成的。材料也可以氧化锌等),并在金属氧化薄膜车上螺旋纹做出不同阻值,然后于外层喷涂不燃性涂料。

其性能与金属膜电阻器类似,但电阻值范围窄。它能够在高温下仍保持其安定性,其典型的特点是金属氧化膜与陶瓷基体结合的更牢,电阻皮膜负载之电力亦较高。耐酸碱能力强,抗盐雾,因而适用于在恶劣的环境下工作。它还兼备低杂音,稳定,高频特性好的优点。

d合成膜电阻

将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。

2.2.2 绕线电阻

用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。

方形线绕电阻

方形线绕电阻(钢丝缠绕电阻)又俗称为水泥电组,采用镍,铬,铁等电阻较大的合金电阻线绕在无碱性耐热瓷件上,外面加上耐热,耐湿,无腐蚀之材料保护而成,再把绕线电阻体放入瓷器框内,用特殊不燃性耐热水泥充填密封而成。

而不燃性涂装线绕电阻的差别只是外层涂装改由矽利康树脂或不燃性涂料。它们的优点是阻值精确,低杂音,有良好散热及可以承受甚大的功率消耗,大多使用于放大器功率级部份。缺点是阻值不大,成本较高,亦因存在电感不适宜在高频的电路中使用。

2.2.3 无感电阻

无感电阻常用于做负载,用于吸收产品使用过程中产生的不需要的电量,或起到缓冲,制动的作用,此类电阻常称为JEPSUN制动电阻或捷比信负载电阻。

2.2.4 实芯碳质电阻

用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。 并在制造时植入导线。电阻值的大小是根据碳粉的比例及碳棒的粗细长短而定。 特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。

2.2.5金属玻璃铀电阻

将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。耐潮湿,高温,温度系数小,主要应用于厚膜电路。贴片电阻(片式电阻)是金属玻璃铀电阻的一种形式,它的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,特点是体积小,精度高,稳定性和高频性能好,适用于高精密电子产品的基板中。

而贴片排阻则是将多个相同阻值的贴片电阻制作成一颗贴片电阻,目的是可有效地限制元件数量,减少制造成本和缩小电路板的面积。 这种贴片电阻主要分为厚膜与薄膜。贴片厚膜电阻:厚膜电阻电路一般采用丝网印刷工艺,膜厚一般大于10μm。厚膜电阻一般精度较差10%,5%,1%是常见精度,同时厚膜电阻的温度系数上很难控制。

贴片薄膜电阻:采用真空蒸发、磁控溅射的方法将一定电阻率材料蒸镀于绝缘材料表面制成一种电阻器,膜厚一般小于10μm。由于材料和工艺上的差别,薄膜电阻的精度较高可以做到0.1%,0.05%,0.25%,0.5%等精度。温度系数也比较好。

2.3按敏感特性

2.3.1、热敏电阻:

是一种对温度反应比较敏感,阻值会随温度的变化的非线性电阻器,通常由单晶、多晶等半导体材料制成。在电路中用RT表示。

A正温度系数热敏电阻:也称PTC,属于直热式热敏电阻。正温度系数热敏电阻在常温下阻值很小,当流经它的电流超过额定值时,其阻值随温度的升高而增大。

B 负温度系数热敏电阻:也称NTC热敏电阻。其主要特性是电阻值与温度变化成反比。

2.3.2、压敏电阻:

压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件,在电路中用RV表示。普通电阻遵守欧姆定律,而压敏电阻的电压与电流则呈现特殊的非线性关系。当压敏电阻器两端所加电压低于标称电压时,其阻值呈现无穷大,内部几乎无电流流过。

当压敏电阻器两端所加电压高于标称电压时,压敏电阻器迅速击穿导通,由高阻状态变为低阻状态,工作电流急剧增大。当两端电压又低于标称值时,压敏电阻器又恢复高阻状态。当两端所加电压超过局限值时,压敏电阻将完全击穿损坏,无法自行恢复。压敏电阻应用在过压保护、防雷击、尖峰吸收回路、限幅、等电路。

2.3.3、光敏电阻:

光敏电阻是一种对光敏感的元件,它的阻值随外界光照强弱变化而变化。在无光照时呈高阻状态,有光照时阻值减小。光敏电阻在电路中“RL或RG”表示。他一般应用在自动照明、自动报警等电路中。

2.3.4、湿敏电阻:

湿敏电阻是一种对环境湿度敏感的元件,它的阻值随环境湿度变化而变化。它分正湿度特性电阻(湿度增大电阻值增大)和负湿度特性电阻(湿度增大电阻值减小)。在电路中他用"RS"表示。常用 与湿度检测器中做传感器。

2.3.5、磁敏电阻:

磁敏电阻是一种对磁场敏感的半导体元件,他可以将磁感应信号转换成电信号。他的阻值随磁场的变化而变化。

2.3.6、气敏电阻:

气敏电阻是一种对特殊气体敏感的原价爱你,他可以将被测气体的浓度和成分信号转变相应的电信号。广泛应用在可燃气体、有害气体的检测中。

2.3.7、力敏电阻:

力敏电阻是一种能将机械力转变为电信号的特殊元件。其电阻随外加力大小而改变。主要用在压力传感器上。

三、电阻器的标示法

3.1、直标法:

用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。

3.2、文字符号法:

用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。

3.3、数码法:

在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。

例:“223”表示22000Ω,即22KΩ±5%

“102”表示1000Ω,即1KΩ ±5%

3.4、色标法:

用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分采用色标法。

色环含义:前面依次是有效数字,最后一环是允许误差,最后前一环为乘数。当电阻为四环时,前两位为有效数字, 第三位为乘方数,第四位为偏差。 当电阻为五环时,前三位为有效数字, 第四位为乘方数, 第五位为偏差。如下图

四、贴片电阻

4.1、封装尺寸

注释: 由封装可得元件封装的长,宽尺寸 。方法:前两位一组,后两位一组分别除以4即可得元件封装大致长和宽,单位为毫米

4.2、常规的贴片电阻的封装尺寸及额定功率

是指在70℃环境温度下进行耐久性试验,而且组织变化不超过该试验的允许值时所允许的最大功耗。各规格尺寸的额定功率下表所示。 需要注意的是,有些尺寸的功率是可以兼容的,比如0603在某些阻值范围内可以做到1/10W,在这种情况下一定要参考生产厂家的规格书及相关技术资料。

英制(mil) 公制(mm) 额定功率(W)@ 70°C

0201 0603 1/20W

0402 1005 1/16W

0603 1608 1/10W, (1/16W)

0805 2012 1/8W,(1/10W)

1206 3216 1/4W,(1/8W)

1210 3225 1/3W, (1/4W)

1812 4832 1/2W,

2010 5025 3/4W,( 1/2W)

2512 6432 1W

4.3、国内常规贴片电阻的标称阻值及偏差:

贴片电阻生产过程采用激光调阻,加之其电阻膜是高稳定的玻璃釉材料,因此贴片电阻的精度比较高,最普通阻值系列的是E24系列,即±5%的偏差;另外还比较常用的E96阻值系列(即±1%的偏差),称做精密贴片电阻;也有极少数场合用到的E192系列(即±0.5%精度的);其他系列基本不采用。

贴片电阻的阻值一般标注在电阻体表面上,阻值代码规则如下:

E24系列: 两位有效数字+零的个数

E96系列: 三位有效数字+零的个数

举例如下:

需要指出的是在贴片电阻的中零欧姆电阻的应用很广泛,应用时注意各尺寸片阻允许的额定电流这一参数。

4.4、最大工作电压

该参数是指可以连续施加在电阻两端的最大直流电压或交流有效值电压;元件极限电压取决于电阻器的尺寸和制造工艺。一般情况下该参数不被提起,但是在进行环境试验时必须参考此参数。

4.5、温度系数

电阻的阻值随着工作温度的变化而变化,这种变化用温度系数来表达,单位是ppm/℃。这种变化对电路的工作稳定性将产生不良影响,电路要求越高,选用的电阻温度系数越小,特别是作为基准电压和提供工作点的电阻,更应该注意这一点。贴片电阻的温度系数比较小,大概在(100~500)ppm/℃,选用时注意参考厂家提供的技术资料。 各尺寸规格及阻值段温度系数可以不同,这些一定注意。

五、电阻器的作用:

电阻器在电子电路中起阻碍电流作用的元器件,其工作原理为电能转化为热能来实现限流限压的功能。

5.1、分压电路

分压电路实际上是电阻的串联电路,如图所示,它有以下几个特点:

①通过各电阻的电流是同一电流,即各电阻中的电流相等、I = I1 = I2 = I3;

②,在串联电路中,电阻大的导体,它两端的电压也 大,电压的分配与导体的电阻成正比,因此,导体串联具有分压作用。,总电压等于各电阻上的电压降之和,,即V= V1 + V2 + V3;

③总电阻等于各电阻之和,即R=R1 +R2+R3:

5.2、分流电路

2. 分流电路实际上是电阻器的并联电路,如图所示。它有以下几点特点:

①各支路的电压等于总电压;

②总电流等于各支路电流之和,即I = I1 + I2 + I3;

③总电阻的倒数等于各支路倒数之和,即1/R =1/R1 + 1/R2 + 1/R3

在实践中经常利用电阻器的并联电路组成分流电路,以对电路中的电流进行分配

5.3、阻抗匹配电路

如下图所示由电阻器组成的阻抗匹配衰减器、它接在特性阻抗不同的两个网络中间,可以起到匹配阻抗的作用。匹配器中电阻器的阻值可由下式确定,

即式中,Z1和Z2为网络1和网络2的阻抗,它们分别为300Ω和75Ω。将它们代入上面两个公式中,则求得RI=259.8Ω,R2=86.6Ω。

5.4、上拉和下拉电阻的作用

5.4.1、上拉电阻的作用:

1、当 TTL 电路驱动 COMS 电路时,如果 TTL 电路输出的高电平低于COMS电路的最低高电平(一般为 3.5V),这时就需要在 TTL 的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在 COMS 芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,来提供泄荷的通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

5.4.2、上拉电阻阻值的选择原则包括:

1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑 以上三点,通常在 1k 到10k 之间选取。对下拉电阻也有类似道理。

下拉电阻同理

5.5、0欧电阻在电路中的作用

1、做为跳线使用。

2、在数字和模拟等混合电路中,往往要求两个地分开,并且单点连接。我们可以用一个0欧的电阻来连接这两个地,而不是直接连在一起。这样做的好处就是,地线被分成了两个网络,在大面积铺铜等处理时,就会方便得多。

3、做保险丝用。由于PCB上走线的熔断电流较大,如果发生短路过流等故障时,很难熔断,可能会带来更大的事故。由于0欧电阻电流承受能力比较弱(其实0欧电阻也是有一定的电阻的,只是很小而已),过流时就先将0欧电阻熔断了,从而将电路断开,防止了更大事故的发生。

4、想测某部分电路的耗电流的时候,可以去掉0ohm电阻,接上电流表,这样方便测耗电流。

5、在布线时,如果实在布不过去了,也可以加一个0欧的电阻

6、在高频信号下,充当电感或电容。(与外部电路特性有关)电感用,主要是解决EMC问题。如地与地,电源和IC Pin间。

电路图符号大全

如果我的回答您还满意。希望采纳 谢谢 电 流 电荷的定向移动叫做电路中,电流常用I表示。电流分直流和交流两种。电流的大小和方向不随时间变化的叫做直流。电流的大小和方向随时间变化的叫做交流。电流的单位是安(A),也常用毫安(mA)或者微安(uA)做单位。

1A=1000mA,1mA=1000uA。

电流可以用电流表测量。测量的时候,把电流表串联在电路中,要选择电流表指针接近满偏转的量程。这样可以防止电流过大而损坏电流表。电 压 河水之所以能够流动,是因为有水位差;电荷之所以能够流动,是因为有电位差。电位差也就是电压。电压是形成电流的原因。在电路中,电压常用U表示。电压的单位是伏(V),也常用毫伏(mV)或者微伏(uV)做单位。

1V=1000mV,1mV=1000uV。

电压可以用电压表测量。测量的时候,把电压表并联在电路上,要选择电压表指针接近满偏转的量程。如果电路上的电压大小估计不出来,要先用大的量程,粗略测量后再用合适的量程。这样可以防止由于电压过大而损坏电压表。电阻电路中对电流通过有阻碍作用并且造成能量消耗的部分叫做电阻。电阻常用R表示。电阻的单位是欧(Ω),也常用千欧(kΩ)或者兆欧(MΩ)做单位。

1kΩ=1000Ω,1MΩ=1000000Ω。导体的电阻由导体的材料、横截面积和长度决定。

电阻可以用万用表欧姆档测量。测量的时候,要选择电表指针接近偏转一半的欧姆档。如果电阻在电路中,要把电阻的一头烫开后再测量。欧姆定律 导体中的电流I和导体两端的电压U成正比,和导体的电阻R成反比,即I=U/R

这个规律叫做欧姆定律。如果知道电压、电流、电阻三个量中的两个,就可以根据欧姆定律求出第三个量,即

I=U/R,R=U/I,U=I×R

在交流电路中,欧姆定律同样成立,但电阻R应该改成阻抗Z,即I=U/Z电 源 把其他形式的能转换成电能的装置叫做电源。发电机能把机械能转换成电能,干电池能把化学能转换成电能。发电机、干电池等叫做电源。通过变压器和整流器,把交流电变成直流电的装置叫做整流电源。能提供信号的电子设备叫做信号源。晶体三极管能把前面送来的信号加以放大,又把放大了的信号传送到后面的电路中去。晶体三极管对后面的电路来说,也可以看做是信号源。整流电源、信号源有时也叫做电源。负 载 把电能转换成其他形式的能的装置叫做负载。电动机能把电能转换成机械能,电阻能把电能转换成热能,电灯泡能把电能转换成热能和光能,扬声器能把电能转换成声能。电动机、电阻、电灯泡、扬声器等都叫做负载。晶体三极管对于前面的信号源来说,也可以看作是负载。电 路 电流流过的路叫做电路。最简单的电路由电源、负载和导线、开关等元件组成。电路处处连通叫做通路。只有通路,电路中才有电流通过。电路某一处断开叫做断路或者开路。电路某一部分的两端直接接通,使这部分的电压变成零,叫做短路。

电动势 电动势是反映电源把其他形式的能转换成电能的本领的物理量。电动势使电源两端产生电压。在电路中,电动势常用δ表示。电动势的单位和电压的单位相同,也是伏。

电源的电动势可以用电压表测量。测量的时候,电源不要接到电路中去,用电压表测量电源两端的电压,所得的电压值就可以看作等于电源的电动势。如果电源接在电路中,用电压表测得的电源两端的电压就会小于电源的电动势。这是因为电源有内电阻。在闭合的电路中,电流通过内电阻r有内电压降,通过外电阻R有外电压降。电源的电动势δ等于内电压Ur和外电压UR之和,即δ=Ur+UR 。严格来说,即使电源不接入电路,用电压表测量电源两端电压,电压表成了外电路,测得的电压也小于电动势。但是,由于电压表的内电阻很大,电源的内电阻很小,内电压可以忽略。因此,电压表测得的电源两端的电压是可以看作等于电源电动势的。 干电池用旧了,用电压用测量电池两端的电压,有时候依然比较高,但是接入电路后却不能使负载(收音机、录音机等)正常工作。这种情况是因为电池的内电阻变大了,甚至比负载的电阻还大,但是依然比电压表的内电阻小。用电压表测量电池两端电压的时候,电池内电阻分得的内电压还不大,所以电压表测得的电压依然比较高。但是电池接入电路后,电池内电阻分得的内电压增大,负载电阻分得的电压就减小,因此不能使负载正常工作。为了判断旧电池能不能用,应该在有负载的时候测量电池两端的电压。有些性能较差的稳压电源,有负载和没有负载两种情况下测得的电源两端的电压相差较大,也是因为电源的内电阻较大造成的。周 期 交流电完成一次完整的变化所需要的时间叫做周期,常用T表示。周期的单位是秒(s),也常用毫秒(ms)或微秒(us)做单位。

1s=1000ms,1s=1000000us。频 率 交流电在1s内完成周期性变化的次数叫做频率,常用f表示。频率的单位是赫(Hz),也常用千赫(kHz)或兆赫(MHz)做单位。

1kHz=1000Hz,1MHz=1000000Hz。交流电频率f是周期T的倒数,即

f=1/T电 容 电容是衡量导体储存电荷能力的物理量。在两个相互绝缘的导体上,加上一定的电压,它们就会储存一定的电量。其中一个导体储存着正电荷,另一个导体储存着大小相等的负电荷。加上的电压越大,储存的电量就越多。储存的电量和加上的电压是成正比的,它们的比值叫做电容。如果电压用U表示,电量用Q表示,电容用C表示,那么

C=Q/U

电容的单位是法(F),也常用微法(uF)或者微微法(pF)做单位。

1F=106uF,1F=1012pF。

电容可以用电容测试仪测量,也可以用万用电表欧姆档粗略估测。欧姆表红、黑两表笔分别碰接电容的两脚,欧姆表内的电池就会给电容充电,指针偏转,充电完了,指针回零。调换红、黑两表笔,电容放电后又会反向充电。电容越大,指针偏转也越大。对比被测电容和已知电容的偏转情况,就可以粗略估计被测电容的量值。在一般的电子电路中,除了调谐回路等需要容量较准确的电容以外,用得最多的隔直、旁路电容、滤波电容等,都不需要容量准确的电容。因此,用欧姆档粗略估测电容量值是有实际意义的。但是,普通万用电表欧姆档只能估测量值较大的电容,量值较小的电容就要用中值电阻很大的晶体管万用电表欧姆档来估测,小于几十个微微法的电容就只好用电容测试仪测量了。容 抗 交流电是能够通过电容的,但是电容对交流电仍然有阻碍作用。电容对交流电的阻碍作用叫做容抗。电容量大,交流电容易通过电容,说明电容量大,电容的阻碍作用小;交流电的频率高,交流电也容易通过电容,说明频率高,电容的阻碍作用也小。实验证明,容抗和电容成反比,和频率也成反比。如果容抗用XC表示,电容用C表示,频率用f表示,那么

XC=1/(2πfC)

容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。电 感 电感是衡量线圈产生电磁感应能力的物理量。给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,那么

L= φ/I

电感的单位是亨(H),也常用毫亨(mH)或微亨(uH)做单位。

1H=1000mH,1H=1000000uH。感 抗 交流电也可以通过线圈,但是线圈的电感对交流电有阻碍作用,这个阻碍叫做感抗。电感量大,交流电难以通过线圈,说明电感量大,电感的阻碍作用大;交流电的频率高,交流电也难以通过线圈,说明频率高,电感的阻碍作用也大。实验证明,感抗和电感成正比,和频率也成正比。如果感抗用XL表示,电感用L表示,频率用f表示,那么

XL= 2πfL

感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。阻 抗 具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。如果三者是串联的,又知道交流电的频率f、电阻R、电感L和电容C,那么串联电路的阻抗

阻抗的单位是欧。

对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。相 位 相位是反映交流电任何时刻的状态的物理量。交流电的大小和方向是随时间变化的。比如正弦交流电流,它的公式是i=Isin2πft。i是交流电流的瞬时值,I是交流电流的最大值,f是交流电的频率,t是时间。随着时间的推移,交流电流可以从零变到最大值,从最大值变到零,又从零变到负的最大值,从负的最大值变到零,,如图3甲所示。在三角函数中2πft相当于角度,它反映了交流电任何时刻所处的状态,是在增大还是在减小,是正的还是负的等等。因此把2πft叫做相位,或者叫做相。

如果t等于零的时候,i并不等于零,公式应该改成i=Isin(2πft+ψ),如图3乙所示。那么2πft+ψ叫做相位,ψ叫做初相位,或者叫做初相。相位差 两个频率相同的交流电相位的差叫做相位差,或者叫做相差。这两个频率相同的交流电,可以是两个交流电流,可以是两个交流电压,可以是两个交流电动势,也可以是这三种量中的任何两个。

例如研究加在电路上的交流电压和通过这个电路的交流电流的相位差。如果电路是纯电阻,那么交流电压和电流电流的相位差等于零。也就是说交流电压等于零的时候,交流电流也等于零,交流电压变到最大值的时候,交流电流也变到最大值。这种情况叫做同相位,或者叫做同相。如果电路含有电感和电容,交流电压和交流电流的相位差一般是不等于零的,也就是说一般是不同相的,或者电压超前于电流,或者电流超前于电压。

加在晶体管放大器基极上的交流电压和从集电极输出的交流电压,这两者的相位差正好等于180°。这种情况叫做反相位,或者叫做反相

压敏电阻标识含义

电阻器与电位器;

符号详见图 1 所示;

1,( a )表示一般的阻值固定的电阻器。

2,( b )表示半可调或微调电阻器。

3,( c )表示电位器。

4,( d)表示带开关的电位器。

5,电阻器的文字符号是“ R ”。

6,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。

电容器的符号;

1,( a )表示容量固定的电容器。

2,( b )表示有极性电容器,例如各种电解电容器。

3,( c )表示容量可调的可变电容器。

4,( d)表示微调电容器。

5,( e )表示一个双连可变电容器。

6,电容器的文字符号是 C 。

电感器的符号;

电感线圈在电路图中的图形符号见图 3 。

1,( a )是电感线圈的一般符号。

2,( b )是带磁芯或铁芯的线圈。

3,( c )是铁芯有间隙的线圈。

4,( d)是带可调磁芯的可调电感。

5,( e )是有多个抽头的电感线圈。

6,电感线圈的文字符号是“ L ”。

变压器的图形符号;

1,( a )是空芯变压器。

2,( b )是滋芯或铁芯变压器。

3,( c )是绕组间有屏蔽层的铁芯变压器。

4,( d)是次级有中心抽头的变压器。

5,( e )是耦合可变的变压器。

6,( f )是自耦变压器。

7,( g )是带可调磁芯的变压器。

8,( h)中的小圆点是变压器极性的标记。

送话器、拾音器和录放音磁头的符号;

1,送话器的符号见图 5 ( a )( b )( c )。

2,( a )为一般送话器的图形符号。

3,( b )是电容式送话器。

4,( c)是压电晶体式送话器的图形符号。

5,送话器的文字符号是“ BM ”。

拾音器俗称电唱头;

图 5 ( d )是立体声唱头的图形符号,它的文字符号是“ B ”。

图 5 ( e)是单声道录放音磁头的图形符号。如果是双声道立体声的,就在符号上加一个“ 2 ”字,见图( f )。

扬声器、耳机的符号;

扬声器、耳机都是把电信号转换成声音的换能元件。

耳机的符号见图 5 ( g )。

它的文字符号是“ B E ”。

扬声器的符号见图 5 ( h),它的文字符号是“ BL ”。

接线元件的符号;

电子电路中常常需要进行电路的接通、断开或转换,这时就要使用接线元件。

接线元件有两大类:

一类是开关。

另一类是接插件。

( 1 )开关的符号

在机电式开关中至少有一个动触点和一个静触点。当我们用手扳动、推动或是旋转开关的机构,就可以使动触点和静触点接通或者断开,达到接通或断开电路的目的。动触点和静触点的组合一般有3 种:

① 动合(常开)触点,符号见图 6 ( a );

② 动断(常闭)触点,符号是图 6 ( b );

③ 动换(转换)触点,符号见图 6 ( c)。

一个最简单的开关只有一组触点,而复杂的开关就有好几组触点。

开关在电路图中的图形符号见图 7 。

1,( a )表示一般手动开关;

2,( b )表示按钮开关,带一个动断触点;

3,( c)表示推拉式开关,带一组转换触点;图中把扳键画在触。

点下方表示推拉的动作;

1,( d )表示旋转式开关,带 3 极同时动合的触点;

2,( e )表示推拉式 1×6 波段开关;

3,( f )表示旋转式 1×6波段开关的符号。

4,开关的文字符号用“ S ”,对控制开关、波段开关可以用“ SA ”,对按钮式开关可以用“ SB ”。

( 2 )接插件的符号

接插件的图形符号见图 8 ;

1,( a )表示一个插头和一个插座,(有两种表示方式)左边表示插座,右边表示插头。

2,( b )表示一个已经插入插座的插头。

3,(c )表示一个 2 极插头座,也称为 2 芯插头座。

4,( d )表示一个 3 极插头座,也就是常用的 3 芯立体声耳机插头座。

5,( e )表示一个 6极插头座。为了简化也可以用图( f )表示,在符号上方标上数字 6 ,表示是 6 极。

6,接插件的文字符号是 X 。为了区分,可以用“ XP ”表示插头,用“ XS”表示插座。

继电器的符号;

因为继电器是由线圈和触点组两部分组成的,所以继电器在电路图中的图形符号也包括两部分:

一个长方框表示线圈;

一组触点符号表示触点组合。

当触点不多电路比较简单时,往往把触点组直接画在线圈框的一侧,这种画法叫集中表示法,如图9 ( a)。

当触点较多而且每对触点所控制的电路又各不相同时,为了方便,常常采用分散表示法。就是把线圈画在控制电路中,把触点按各自的工作对象分别画在各个受控电路里。这种画法对简化和分析电路有利。

但这种画法必须在每对触点旁注上继电器的编号和该触点的编号,并且规定所有的触点都应该按继电器不通电的原始状态画出。

图9 ( b )是一个触摸开关。当人手触摸到金属片 A 时, 555 时基电路输出( 3 端)高电位,使继电器 KR1 通电,触点闭合使灯点亮使电铃发声。 555时基电路是控制部分,使用的是 6 伏低压电。电灯和电铃是受控部分,使用的是 220 伏市电。

继电器的文字符号都是“ K ”。

有时为了区别,交流继电器用“ KA ”,电磁继电器和舌簧继电器可以用“ KR ”,时间继电器可以用“ KT ”。

电池及熔断器符号

电池的图形符号见图 10 ;

长线表示正极,短线表示负极,有时为了强调可以把短线画得粗一些。

1,图 10 ( b)是表示一个电池组。有时也可以把电池组简化地画成一个电池,但要在旁边注上电压或电池的数量。

2,图 10 ( c )是光电池的图形符号。

3,电池的文字符号为“ GB”。

4,熔断器的图形符号见图 11 ,它的文字符号是“ FU ”。

二极管、三极管符号;

半导体二极管在电路图中的图形符号见图 12 。

1,( a)为一段二极管的符号,箭头所指的方向就是电流流动的方向,就是说在这个二级管上端接正,下端接负电压时它就能导通。

2,图( b )是稳压二极管符号。

3,图( c)是变容二极管符号,旁边的电容器符号表示它的结电容是随着二极管两端的电压变化的。

4,图( d )是热敏二极管符号。

5,图( e)是发光二极管符号,用两个斜向放射的箭头表示它能发光。

6,图( f)是磁敏二极管符号,它能对外加磁场作出反应,常被制成接近开关而用在自动控制方面。

7,二极管的文字符号用“ V ”,有时为了和三极管区别,也可能用“ VD”来表示。

由于 PNP 型和 NPN 型三极管在使用时对电源的极性要求是不同的,所以在三极管的图形符号中应该能够区别和表示出来。

图形符号的标准规定:只要是 PNP型三极管,不管它是用锗材料的还是用硅材料的,都用图 13 ( a )来表示。

同样,只要是 NPN 型三极管,不管它是用锗材料还是硅材料的,都用图 13 ( b)来表示。图 13 ( c )是光敏三极管的符号。图 13 ( d )表示一个硅 NPN 型磁敏三极管。

晶闸管、单结晶体管、场效应管的符号;

晶闸管是晶体闸流管或可控硅整流器的简称,常用的有单向晶闸管、双向晶闸管和光控晶闸管,它们的符号分别为图 14 中的( a )( b )( c)。

晶闸管的文字符号是“ VS ”。

单结晶体管的符号见图 15 ;

利用电场控制的半导体器件,称为场效应管,它的符号如图 16 所示;

1,( a )表示 N 沟道结型场效应管。

2,( b )表示 N沟道增强型绝缘栅场效应管。

3,( c )表示 P 沟道耗尽型绝缘栅场效应管。它们的文字符号也是“ VT ”。

扩展资料;

电路图主要由元件符号、连线、结点、注释四大部分组成 。

元件符号表示实际电路中的元件,它的形状与实际的元件不一定相似,甚至完全不一样。但是它一般都表示出了元件的特点,而且引脚的数目都和实际元件保持一致。

连线表示的是实际电路中的导线,在原理图中虽然是一根线,但在常用的印刷电路板中往往不是线而是各种形状的铜箔块,就像收音机原理图中的许多连线在印刷电路板图中并不一定都是线形的,也可以是一定形状的铜膜。 结点表示几个元件引脚或几条导线之间相互的连接关系。

所有和结点相连的元件引脚、导线,不论数目多少,都是导通的。 注释在电路图中是十分重要的,电路图中所有的文字都可以归入注释—类。细看以上各图就会发现,在电路图的各个地方都有注释存在,它们被用来说明元件的型号、名称等等。

参考资料;百度百科-电路图

压敏电阻的作用

压敏电阻是一种限压型保护器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。关于压敏电阻的符号命名及意义如下:

压敏电阻器的型号命名分为四部分,各部分的含义见下表:

第一部分用字母 “M” 表示主称为敏感电阻器。

第二部分用字母 “Y” 表示敏感电阻器为压敏电阻器。

第三部分用字母表示压敏电阻器的用途的特征。

第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。

常见电工36个符号各代表什么意思?

压敏电阻 是指在一定电流电压范围内电阻值随电压而变,或者是说 电阻值对电压敏感的电阻器。英文名称叫“Voltage Dependent Resistor”简写为“VDR”, 或者叫做“Varistor"。压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。

压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。它在电路中用文字符号“RV”或“R”表示,下图是其电路图形符号。

压敏电阻作用:

压敏电阻的最大特点是当加在它上面的电压低于它的阀值时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。通常压敏电阻在低电压下是高阻的,而超过一定电压后就会变成低阻态。它主要用于作过压保护和吸收浪涌电流。如过压漏电保护开关里就是用压敏电阻做敏感元件。

常见电工36个符号各代表如下:

电阻R,电容C,二极管/发光二极管D、VD,三极管/可控硅V、VT,轻触开关S,蜂鸣器B,BZ,芯片IC、N,继电器J,变压器B、T,压敏电阻RT,保险丝F,光耦N,接插件J,电机D,天线T。

AC交流电、DC直流电、FU熔断器、G发电机、M电动机、HG绿灯、HR红灯、HW白灯、HP光字牌、K继电器。

KA(NZ)电流继电器(负序零序)、KD差动继电器、KF闪光继电器、KH热继电器、KM中间继电器、KOF出口中间继电器、KS信号继电器。

电气符号:

1、继电器 KJ。

2、电流继电器 KA 、LJ。

3、负序电流继电器 KAN、 FLJ。

4、零序电流继电器 KAZ、 LLJ。

电工操作注意事项:

1、施工现场供电应采用三相五线制(TN-S)系统,所有电气设备的金属外壳及电线管必须与专用保护零线可靠连接,对产生振动的设备其保护零线的连接点不少于两处,保护零线不得装设开关或溶断器。

2、保护零线应单独敷设,不作它用,除在配电室或配电箱处作接地外,应在线路中间处和终端处作重复接地,并应与保护零线相连接,其接地电阻不大于10Ω。

压敏电阻品牌有哪些?_压敏电阻符号