首页 > 数码科技 > 污水氨氮超标怎么处理?_氨氮废水处理

污水氨氮超标怎么处理?_氨氮废水处理

栏目:数码科技

作者:B姐

热度:0

时间:2024-02-29 09:59:37

折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。

生物脱氮法。

微生物去除氨氮过程需经两个阶段。

第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。

在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。

常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。

氨氮废水处理(技术原理与应用)

折点氯化法

折点氯化法除氨的原理为氯气与氨作用转化成没有危害的的N2。处理时所需的实际上氯气量关键在于温度、pH及氨氮浓度。折点氯化法处理后的出水在排放前通常需要活性炭或SO2进行反氯化以除去水里面残留的氯。但对液氯的安全性运用和存储条件高,处理成本也较高。

化学沉淀法

该法将氨与化学沉淀剂作用,转化成沉淀物以除去污水中的氨氮。该方式的主要是局限取决于沉淀药剂用量相对较大,从而致使处理成本较高。

生物法

微生物去除氨氮全过程需经两个阶段。第一个环节硝化反应全过程和第二个环节反硝化全过程。传统的生物法氨氮去除工艺流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统,占地面积大,硝化反应速率低。HNF-MP工艺高效脱氮设备,采用高效硝化细菌+自旋转填料+多级自回流分离器,氨氮去除效率高;相比传统技术,可以节约30%-50%的占地面积。

污水厂氨氮超标该如何选择最有效的解决方法?

氨氮废水是指含有氨氮化合物的废水,这些化合物包括氨气、铵离子、亚硝酸盐和硝酸盐等。这种废水通常来自于化肥厂、农业养殖场、污水处理厂和其他工业生产过程中的废水排放。

一、氨氮废水处理的必要性

氨氮废水的排放会对环境和人类健康造成严重影响。氨氮化合物可以导致水体富营养化,影响水质,使水生生物死亡。此外,氨氮化合物还会与其他污染物质发生反应,形成有毒有害的物质,对人体健康造成危害。因此,对氨氮废水进行处理是必要的。

二、氨氮废水处理的技术原理

氨氮废水处理的技术原理主要包括生物法、物化法和膜分离法。

1.生物法:通过利用微生物将氨氮化合物转化为无害物质的方式来处理氨氮废水。常见的生物法包括活性污泥法、生物膜法和微生物固定化技术等。

2.物化法:通过化学反应、吸附、沉淀等方式将氨氮化合物转化为无害物质的方式来处理氨氮废水。常见的物化法包括化学沉淀法、吸附法和氧化法等。

3.膜分离法:通过利用半透膜将氨氮化合物与水分离的方式来处理氨氮废水。常见的膜分离法包括逆渗透法、超滤法和微滤法等。

三、氨氮废水处理的操作步骤

1.氨氮废水处理的前处理:包括调节pH值、去除悬浮物和沉淀有机物等操作。

2.生物法处理:将氨氮化合物转化为无害物质的方式有多种,如活性污泥法、生物膜法和微生物固定化技术等。其中,活性污泥法是最为常见的一种处理方式。

3.物化法处理:通过化学反应、吸附、沉淀等方式将氨氮化合物转化为无害物质的方式有多种,如化学沉淀法、吸附法和氧化法等。

4.膜分离法处理:通过利用半透膜将氨氮化合物与水分离的方式来处理氨氮废水。常见的膜分离法包括逆渗透法、超滤法和微滤法等。

四、氨氮废水处理的应用

氨氮废水处理技术已经广泛应用于化肥厂、农业养殖场、污水处理厂和其他工业生产过程中的废水排放。通过氨氮废水处理技术的应用,可以有效地减少氨氮化合物对环境和人类健康的危害,保护水资源的安全和可持续发展。

废水中氨氮应该如何去除

吸附法:膨润土、天然或合成沸石、高岭土、活性炭均可用于吸附废水中的氮和氮,其中合成沸石对铵离子的吸附容量最高。吹脱法:利用气相浓度和液相浓度的气液平衡关系,在碱性条件下分离氨氮的方法。一般认为,吹脱与湿度、PH值和气液比有关。化学沉淀法:可用氢氧化镁、磷酸或氢氧化镁沉淀废水中的氨氮。前者优于后者,最适pH为9-11,氢氧化镁与氨水的摩尔比为4: 1,磷酸与氢氧化镁的摩尔比为1.5:1,沉淀为磷酸铵镁。该方法可将废水中的氨氮降至1毫克/升..点加氯法是利用氨氮和氯气的反应,最终生成氮气,从水中去除。氯的用量符合氯化曲线。离子交换法,一般选用阳离子交换树脂。生物处理就是我们常说的生物脱氮,主要包括氨化、硝化、反硝化,最后将氮从水中去除。氨氮的含义:水中以游离氨(NH3)和铵离子(NH4)形式存在的氮。动物有机质的含氮量一般高于植物有机质。同时,人和动物粪便中的含氮有机物不稳定,容易分解成氨。因此,当水中氨氮含量增加时,指的是以氨或铵离子形式存在的结合态氮。氨氮超标原因:生活污水中的食物残渣等含氮有机物被微生物分解产生氨氮。

污水中氨氮的去除主要是基于传统活性污泥法的硝化工艺,即延长曝气,可以降低系统负荷。氨氮不达标一般是溶解氧不足或污泥浓度低,只能通过增加溶解氧和污泥浓度,或投加种泥来解决。可能导致出水氨氮超标的原因有很多,主要介绍以下几点:(1)污泥负荷和泥龄生物硝化是一个低负荷过程,F/M一般为0.05 ~ 0.15kg BOD/kgmlvss·d,负荷越低,硝化进行得越充分,NH3-N向NO3-N转化的效率越高。与低负荷相对应,生物硝化系统的SRT一般较长,因为硝化细菌的世代周期较长。如果生物系统的污泥停留时间过短,即SRT过短,污泥浓度低,则无法培养出硝化细菌,无法获得硝化效果。SRT的控制程度取决于温度和其他因素。对于以脱氮为主要目的的生物系统,SRT通常需要11 ~ 23天。

(2)生物硝化系统的回流比一般大于传统的活性污泥法,主要是因为生物硝化系统的活性污泥混合物中已经含有大量的硝酸盐。回流比过小,活性污泥在二沉池停留时间长,容易导致反硝化和污泥上浮。回流比通常控制在50-100%。

(3)水力停留时间生物硝化曝气池的水力停留时间也比活性污泥法长,至少应在8小时以上。这主要是因为硝化速率远低于有机污染物的去除速率,所以需要较长的反应时间。

(4)BOD5/TKNTKN是指水中有机氮和氨氮的总和,进水污水中的BOD5/TKN是影响硝化效果的重要因素。相同运行条件下,BOD5/TKN越大,活性污泥中硝化细菌的比例越小,硝化速率越小,硝化效率越低。相反,BOD5/TKN越小,硝化效率越高。许多城市污水处理厂发现,BOD5/TKN的最佳范围约为2 ~ 3。

(5)硝化速率生物硝化系统的一个特殊工艺参数是硝化速率,是指单位重量活性污泥每天转化的氨氮量。硝化速率取决于活性污泥中硝化菌的比例、温度等诸多因素,典型值为0.02 GnH3-N/GML VSS× d. (6)溶解氧硝化菌是专性好氧菌,在没有氧气的情况下停止其生命活动,硝化菌的摄氧速率远低于分解有机物的细菌。如果没有维持足够的氧气,硝化细菌将“竞争”少于所需的氧气。因此,需要保持生物池好氧区的溶解氧在2mg/L以上,特殊情况下需要增加溶解氧含量。(7)温度硝化菌对温度变化也非常敏感。当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。因此,在冬季,污水处理厂尤其是北方污水处理厂的出水氨氮超标是显而易见的。(8)pH硝化细菌对pH响应非常敏感,在pH 8 ~ 9范围内生物活性最强。当pH小于6.0或大于9.6时,硝化细菌的生物活性会受到抑制,趋于停止。因此,生物硝化系统混合溶液的pH值应尽可能控制在大于7.0。

氨氮超标的处理方法通常分为化学处理和生物处理两大类。化学处理包括:

①吹脱法,利用水中氨氮的平衡关系,将pH调至碱性,使氨氮以NH3-N的非离子状态存在,最后用空气吹脱。

(2)断裂点氯化法,利用氨氮和氯气的反应,最终生成氮气,将其从水中去除。氯的用量符合氯化曲线。

③离子交换法,一般用阳离子交换树脂。生物处理就是我们常说的生物脱氮,主要包括氨化、硝化、反硝化,最后将氮从水中去除。现在生物脱氮有很多成熟的工艺,在水处理中很常见。我希望我的

生物法机理——生物硝化和反硝化机理:在污水的生物脱氮处理过程中,在好氧条件下通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐,在缺氧条件下利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。因而污水的生物脱氮包括硝化和反硝化两个阶段。

A/O系统:A/O脱氮除磷系统,即缺氧、好氧脱氮除磷系统,是70年代主要由美国、南非等国开发的具有去除废水中氮污染物的工艺,同时对脱磷亦有一定的效果,A/O系统流程简单、运行管理方便,且很容易利用原厂改建,从而提高了出水水质。

扩展资料:

注意事项:

生活污水水质通常比较稳定,一般的处理方法包括酸化、好氧生物处理、消毒等。而工业废水应根据具体的水质情况进行工艺流程的合理选择。

特别需要指出的是,对于采用好氧生物处理工艺处理废水来说,要注意废水的可生化性,通常要求COD/BOD5>0.3,如不能满足要求,可考虑进行厌氧生物水解酸化,以提高废水的可生化性,或是考虑采用非生物处理的物理或化学方法等。

人民网-破解6年辽河流域氨氮超标难题

污水氨氮超标怎么处理?_氨氮废水处理